高斯小学奥数五年级上册含答案_整除问题初步
《高斯小学奥数五年级上册含答案_整除问题初步》由会员分享,可在线阅读,更多相关《高斯小学奥数五年级上册含答案_整除问题初步(8页珍藏版)》请在七七文库上搜索。
1、第一讲 整除问题初步 从这一讲开始,我们将会进入一个神奇而美妙的世界:数论 什么是数论呢? 人类从学会数数开始,就一直和整数打交道人们在对整数的应用和研究中,探索出很 多奇妙的数学规律,正是这些富有魅力的规律,吸引了古往今来的许多数学家,于是就出现 了数论这门学科 确切的说,数论就是一门研究整数性质的学科 我们就从最基本的性质整除开始,一起在数论的海洋中遨游吧 数论在数学中的地位是独特的,伟大的数学家高斯曾经说过: “数学是科学的皇后,数 论是数学的皇冠” 一、一、 整除的定义整除的定义 如果整数 a 除以整数 b(0b ) ,除得的商是整数且没有余数,我们就说 a 能被 b 整除, 也可以说
2、 b 能整除 a,记作|b a 如果除得的结果有余数,我们就说 a 不能被 b 整除,也可以说 b 不能整除 a 二、二、 整除的一些基本性质:整除的一些基本性质: 1 尾数判断法 (1) 能被 2,5 整除的数的特征:个位数字能被 2 或 5 整除 (2) 能被 4,25 整除的数的特征:末两位能被 4 或 25 整除 (3) 能被 8,125 整除的数的特征:末三位能被 8 或 125 整除 2 数字求和法 能被 3,9 整除的数的特征:各位数字之和能被 3 或 9 整除 3 奇偶位求差法 能被 11 整除的数的特征: “奇位和 ”与“偶位和 ”的差能被 11 整除 我们把一个数从右往左数
3、的第 1、3、5 位,统称为奇数位奇数位,把一个数从右往左数 的第 2、4、6 位,统称为偶数位偶数位我们把“奇数位上的数字之和”简称为“奇位和奇位和” , 把“偶数位上的数字之和”简称为“偶位和偶位和” 下面我们来看一下如何运用这些性质 例题1. 判断下面 11 个数的整除性: 23487,3568,8875,6765,5880,7538,198954,6512,93625,864,407 (1)这些数中,有哪些数能被 4 整除?哪些数能被 8 整除? (2)哪些数能被 25 整除?哪些数能被 125 整除? (3)哪些数能被 3 整除?哪些数能被 9 整除? (4)哪些数能被 11 整除?
4、 【分析】关于 4、8、25、125 以及 3、9、11 的整除特征刚才都已经介绍过了,大家不 妨根据整除特性判断一下 练习1. 在数列 3124、312、3823、45235、5289、5588、661、7314 中哪些数能被 4 整除, 哪些数能被 3 整除,哪些数能被 11 整除? 如果将例题1中能被3整除的数相加或相减, 会发现得到的结果还能被3整除; 同样的, 如果将其中能被 11 整除的数相加或相减,会发现得到的结果同样能被 11 整除从中我们可 以总结出如下规律: 和整除性与差整除性:两个数如果都能被自然数 a 整除,那它们的和与差也都能被 a 整除 例题2. 173是一个四位数
5、文老师说: “我在其中的方框内先后填入 3 个数字,得到 3 个四位数,依次能被 9,11,8 整除 ”问:文老师在方框中先后填入的 3 个数字之和是 多少? 【分析】本题包括三个小问题,我们逐个分析需要分别用到 9、11 和 8 的整除特性 练习2. 在23的方框内先后填上 3 个数字,分别组成 3 个三位数,使它们依次被 3、4、 5 整除 上面我们已经学习了如何利用“整除特征” ,解决单个数的整除问题下面我们再来看 一看,涉及多个数的整除问题应该如何解决 例题3. 牛叔叔给 45 名工人发完工资后,将总钱数记在一张纸上但是记账的那张纸破了 两个洞,上面只剩下“678”,其中方框表示破了的
6、洞牛叔叔记得每名工人的工 资都一样,并且都是整数元请问:这 45 名工人的总工资有可能是多少元呢? 【分析】这 45 名员工的工资都一样,所以总工资就能被 45 整除我们没有学过被 45 整除的数的特征但注意到455 9,于是678应该能同时被 5 和 9 整除,那么 先考虑哪一个数的整除特征比较好呢? 练习3. 四位数33能被 36 整除,那么这个四位数可能是多少? 在例 3 中,我们并不知道 45 的整除特征,但是,能被 45 整除的数,也能被 5 和 9 整除,那么只需考虑 5 和 9 的整除特征即可 请同学们注意,虽然,但是在考虑能否被 45 整除时,不能只考虑被 3 和 15 整除你
7、能想明白为什么吗? 例题4. 一天,王经理去电信营业厅为公司安装一部电话服务人员告诉他,目前只有形如 “123468”的号码可以申请也就是说,在申请号码时,方框内的两个数字可以 随意选择, 而其余数字不得改动 王经理打算申请一个能同时被 8 和 11 整除的号码 请 问:他申请的号码可能是多少? 【分析】要被 8 整除,说明号码的后三位68是 8 的倍数想一下,这样的三位数是 唯一的吗? 练习4. 七位数22333能被 44 整除,那么这个七位数是多少? 有时候满足题目条件的答案会非常多 如果只要求找出最大的或最小的, 我们只需要从 极端情况考虑即可 例题5. 在所有各位数字互不相同的五位数中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 奥数五 年级 上册 答案 整除 问题 初步
文档标签
- 高斯小学奥数五年级上册含答案_比例应用题
- 高斯小学奥数五年级上册含答案_分数基本计算
- 高斯小学奥数五年级上册含答案_整除问题初步
- 五年级高斯奥数之工程问题含答案
- 高斯小学奥数五年级上册含答案_整除问题进阶
- 五年级高斯奥数之行程问题五含答案
- 五年级高斯奥数之行程问题四含答案
- 五年级高斯奥数之整除含答案
- 高斯小学奥数五年级上册含答案_质数与合数
- 高斯小学奥数五年级上册含答案_工程问题
- 高斯小学奥数五年级上册含答案_逻辑推理二
- 高斯小学奥数五年级上册含答案_燕尾模型
- 五年级高斯奥数之数字问题含答案
- 高斯小学奥数含答案三年级
- 五年级高工程问题含答案
- 高斯小学奥数五年级上册含答案_环形路线
- 高斯小学奥数含答案二年级
- 高斯小学奥数五年级上册含答案
- 高斯小学小升初
- 导引 整除
链接地址:https://www.77wenku.com/p-140310.html