2020年云南省曲靖二中高考数学一模试卷(文科)含详细解答
《2020年云南省曲靖二中高考数学一模试卷(文科)含详细解答》由会员分享,可在线阅读,更多相关《2020年云南省曲靖二中高考数学一模试卷(文科)含详细解答(22页珍藏版)》请在七七文库上搜索。
1、若复数 z(i 是虚数单位) ,则|z|( ) A B C1 D 2 (5 分)已知集合 A0,1,2,集合,则 AB( ) A0,1 B1,2 C1 D2 3 (5 分)已知平面 l,m 是 内不同于 l 的直线,那么下列命题中错误的是( ) A若 m,则 ml B若 ml,则 m C若 m,则 ml D若 ml,则 m 4 (5 分)已知数列an的前 n 项和为 Sn,且 an+1an+a(nN*,a 为常数) ,若平面内的 三个不共线的非零向量,满足,A,B,C 三点共线 且该直线不过 O 点,则 S2010等于( ) A1005 B1006 C2010 D2012 5 (5 分)已知向
2、量 (1,cos) , (sin,2) ,且 ,则 sin2+6cos2 的值为 ( ) A B2 C2 D2 6 (5 分)执行如图所示的程序框图,令 yf(x) ,若 f(a)1,则实数 a 的取值范围是 ( ) 第 2 页(共 22 页) A (,2)(2,5 B (,1)(1,+) C (,2)(2,+) D (,1)(1,5 7 (5 分)已知 mR, “函数 y2x+m1 有零点”是“函数 ylogmx 在(0,+)上为减 函数”的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件 8 (5 分)已知某班学生的数学成绩 x(单位:分)与物理成绩 y(单位
3、:分)具有线性相 关 关 系 , 在 一 次 考 试 中 , 从 该 班 随 机 抽 取 5 名 学 生 的 成 绩 , 经 计 算 : ,设其线性回归方程为: 0.4x+ 若该班某学生的数学成 绩为 105,据此估计其物理成绩为( ) A66 B68 C70 D72 9 (5 分)等比数列an的前 n 项和为 Sn,若 S22,S36,则 S5( ) A18 B10 C14 D22 10 (5 分)函数 f(x)2x4sinx,x,的图象大致是( ) A B 第 3 页(共 22 页) C D 11 (5 分)已知 F1,F2是双曲线1(a0,b0)的左、右焦点,设双曲线的 离心率为 e若在
4、双曲线的右支上存在点 M,满足|MF2|F1F2|,且 esinMF1F21,则 该双曲线的离心率 e 等于( ) A B C D 12 (5 分) 定义在 R 上的可导函数 f(x)满足 f(1) 1, 且 2f (x)1, 当 x, 时,不等式的解集为( ) A (,) B (,) C (0,) D (,) 二、填空题(本大题共二、填空题(本大题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分.把答案填在答题卡中的横线上把答案填在答题卡中的横线上.) 13 (5 分)已知实数 x,y 满足,则目标函数 zx+2y 的最小值为 14(5 分) 已知 x0, y0, 且 x+2y
5、xy, 若 x+2ym2+2m 恒成立, 则 xy 的最小值为 , 实数 m 的取值范围为 15 (5 分)已知圆 M:x2+y24,在圆 M 上随机取一点 P,则 P 到直线 x+y2 的距离大于 2的概率为 16 (5 分)平面四边形 ABCD 中,ABADCD1,BD,BDCD,将其沿对角线 BD 折成四面体 ABCD,使平面 ABD平面 BCD,若四面体 ABCD 顶点在同 一个球面上,则该球的表面积 三、解答题(共三、解答题(共 70 分解答应写出文字说明,证明过程或演算步分解答应写出文字说明,证明过程或演算步骤骤.第第 17-21 题为必考题,题为必考题, 每道试题考生都必须作答每
6、道试题考生都必须作答.第第 22、23 题为选考题,考生根据要求作答题为选考题,考生根据要求作答.) (一)必考题:共) (一)必考题:共 60 分分. 第 4 页(共 22 页) 17 (12 分)已知向量 (sinx,cosx) , (cosx,cosx) ,f(x) (1)求 f(x)的单调递增区间; (2)在ABC 中,角 A,B,C 的对边分别为 a,b,c.,若 f(A) 1,求ABC 的周长 18 (12 分)某单位 N 名员工参加“社区低碳你我他”活动他们的年龄在 25 岁至 50 岁之 间按年龄分组:第 1 组25,30) ,第 2 组30,35) ,第 3 组35,40)
7、,第 4 组40,45) , 第 5 组45,50,得到的频率分布直方图如图所示下表是年龄的频率分布表 区间 25,30) 30,35) 35,40) 40,45) 45,50 人数 25 a b (1)求正整数 a,b,N 的值; (2)现要从年龄较小的第 1,2,3 组中用分层抽样的方法抽取 6 人,则年龄在第 1,2, 3 组的人数分别是多少? (3)在(2)的条件下,从这 6 人中随机抽取 2 人参加社区宣传交流活动,求恰有 1 人 在第 3 组的概率 19 (12 分)如图,在边长为 3 的正方形 ABCD 中,点 E,F 分别在边 AB,BC 上(如图 1) , 且 BEBF,将A
8、ED,DCF 分别沿 DE,DF 折起,使 A,C 两点重合于点 A(如图 2) (1)求证:ADEF; (2)当 BFBC 时,求点 A到平面 DEF 的距离 第 5 页(共 22 页) 20 (12 分)已知 P 是圆上任意一点,F2(1,0) ,线段 PF2的垂直 平分线与半径 PF1交于点 Q,当点 P 在圆 F1上运动时,记点 Q 的轨迹为曲线 C (1)求曲线 C 的方程; (2)过点的直线 l 与(1)中曲线相交于 A,B 两点,O 为坐标原点,求 AOB 面积的最大值及此时直线 l 的方程 21 (12 分)设函数 f(x)x2+ax+lnx(aR) (I)若 a1 时,求函数
9、 f(x)的单调区间; ()设函数 f(x)在,3上有两个零点,求实数 a 的取值范围 请考生在第请考生在第 22、23 两题中任选一题作答,并用两题中任选一题作答,并用 2B 铅笔在答题卡上把所选题目的题号涂黑铅笔在答题卡上把所选题目的题号涂黑. 注意所做题目的题号必须与所涂题号一致,在答题卡选答区域指定位置答题注意所做题目的题号必须与所涂题号一致,在答题卡选答区域指定位置答题.如果多做,则如果多做,则 按所做的第一题计分按所做的第一题计分.选修选修 4-4:坐标系与参数方程:坐标系与参数方程 22 (10 分)在直角坐标系 xOy 中,已知圆 C:( 为参数) ,点 P 在直线 l: x+
10、y40 上,以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系 ()求圆 C 和直线 l 的极坐标方程; ()射线 OP 交圆 C 于 R,点 Q 在射线 OP 上,且满足|OP|2|OR|OQ|,求 Q 点轨迹 的极坐标方程 选修选修 4-5:不等式选讲:不等式选讲(本题满分(本题满分 0 分)分) 23已知函数 f(x)|x1|x+2| ()若不等式 f(x)|m1|有解,求实数 m 的最大值 M; ()在()的条件下,若正实数 a,b 满足 3a2+b2M,证明:3a+b4 第 6 页(共 22 页) 2020 年云南省曲靖二中高考数学一模试卷(文科)年云南省曲靖二中高考数学一模试卷(
11、文科) 参考答案与试题解析参考答案与试题解析 一、选择题(共一、选择题(共 12 小题,小题,每小题每小题 5 分,共分,共 60 分,在每小题的四个选项中,只有一项符合分,在每小题的四个选项中,只有一项符合 要求要求.) 1 (5 分)若复数 z(i 是虚数单位) ,则|z|( ) A B C1 D 【分析】利用复数的除法运算化简后利用模的公式计算 【解答】解:z 所以|z| 故选:B 【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题 2 (5 分)已知集合 A0,1,2,集合,则 AB( ) A0,1 B1,2 C1 D2 【分析】求出集合 A,B,由此能求出 AB
12、【解答】解:集合 A0,1,2,集合, Bx|1x2, AB1 故选:C 【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础 题 3 (5 分)已知平面 l,m 是 内不同于 l 的直线,那么下列命题中错误的是( ) A若 m,则 ml B若 ml,则 m C若 m,则 ml D若 ml,则 m 【分析】 由题设条件, 平面 l, m 是 内不同于 l 的直线,结合四个选项中的条件, 对结论进行证明,找出不能推出结论的即可 【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行; 第 7 页(共 22 页) B 选项是正确命题,因为两个平面相交,一个
13、面中平行于它们交线的直线必平行于另一 个平面; C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线; D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这 个平面; 综上 D 选项中的命题是错误的 故选:D 【点评】本题考查空间中直线与平面之间的位置关系,解题的关键是有着较强的空间想 像能力以及熟练掌握点线面位置关系判断的一些定义,定理及条件,并能灵活组织这些 材料作出证明,故也考查了推理论证的能力 4 (5 分)已知数列an的前 n 项和为 Sn,且 an+1an+a(nN*,a 为常数) ,若平面内的 三个不共线的非零向量,满足,A,B,C 三点
14、共线 且该直线不过 O 点,则 S2010等于( ) A1005 B1006 C2010 D2012 【分析】先可判断数列an为等差数列,而根据,及三点 A,B, C 共线即可得出 a1+a20101,从而根据等差数列的前 n 项和公式即可求出 S2010的值 【解答】解:由 an+1an+a 得,an+1ana; an为等差数列; 由,所以 A,B,C 三点共线; a1005+a1006a1+a20101, S201020101005 故选:A 【点评】考查等差数列的定义,三点 A,B,C 共线的充要条件:x+y,且 x+y 1,等差数列的通项公式,及等差数列的前 n 项和公式 5 (5 分
15、)已知向量 (1,cos) , (sin,2) ,且 ,则 sin2+6cos2 的值为 ( ) A B2 C2 D2 第 8 页(共 22 页) 【分析】由题意可得 tan2,而 sin2+6cos2,分子分母 同除以 cos2,代入 tan2 可得答案 【解答】解:由题意可得向量 (1,cos) , (sin,2) ,且 ,即 tan2, 所以 sin2+6cos22 故选:B 【点评】本题考查三角函数的运算,把函数化为正切函数是解决问题的关键,属中档题 6 (5 分)执行如图所示的程序框图,令 yf(x) ,若 f(a)1,则实数 a 的取值范围是 ( ) A (,2)(2,5 B (,
16、1)(1,+) C (,2)(2,+) D (,1)(1,5 【分析】执行该程序的功能是计算并输出分段函数 f(x) ,讨论 a 的取值情况,求出 f(a) 1 时的解集即可 【解答】解:执行该程序的功能是计算并输出分段函数 f(x), 当 a2 时,由 f(a)a21,解得:a(,1)(1,2, 第 9 页(共 22 页) 当 2a5 时,由 f(a)2a31,解得 a(2,5; 当 a5 时,由 f(a)1,解得 a; 综上所述,a 的取值范围是(,1)(1,5 故选:D 【点评】本题考查了程序框图与分段函数的应用问题,也考查了不等式与分类讨论的应 用问题,是综合题 7 (5 分)已知 m
17、R, “函数 y2x+m1 有零点”是“函数 ylogmx 在(0,+)上为减 函数”的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件 【分析】根据函数的性质求出 m 的等价条件,结合充分条件和必要条件的定义进行判断 即可 【解答】解:若函数 yf(x)2x+m1 有零点,则 f(0)1+m1m1, 当 m0 时,函数 ylogmx 在(0,+)上为减函数不成立,即充分性不成立, 若 ylogmx 在(0,+)上为减函数,则 0m1,此时函数 y2x+m1 有零点成立, 即必要性成立, 故“函数 y2x+m1 有零点”是“函数 ylogmx 在(0,+)上为减函
18、数”的必要不 充分条件, 故选:B 【点评】本题主要考查充分条件和必要条件的判断,根据函数零点和对数函数的性质求 出等价条件是解决本题的关键 8 (5 分)已知某班学生的数学成绩 x(单位:分)与物理成绩 y(单位:分)具有线性相 关 关 系 , 在 一 次 考 试 中 , 从 该 班 随 机 抽 取 5 名 学 生 的 成 绩 , 经 计 算 : ,设其线性回归方程为: 0.4x+ 若该班某学生的数学成 绩为 105,据此估计其物理成绩为( ) A66 B68 C70 D72 【分析】由题意求出 、 ,代入线性回归方程求得 ,再计算 x105 时 的值 第 10 页(共 22 页) 【解答】
19、解:由题意知, xi47595, yi32064, 代入线性回归方程 0.4x+ 中,得 640.495+ ,解 26; 所以线性回归方程为 0.4x+26, 当 x105 时, 0.4105+2668, 即该班某学生的数学成绩为 105 时,估计它的物理成绩为 68 故选:B 【点评】本题考查了线性回归方程过样本中心点的应用问题,是基础题 9 (5 分)等比数列an的前 n 项和为 Sn,若 S22,S36,则 S5( ) A18 B10 C14 D22 【分析】运用等比数列的通项公式和前 n 项和公式列方程解方程可解决此问题 【解答】解:根据题意得,q1 a +a22 a38 又 a1(1
20、+q)2,a1q28 q244q 解得 q2,a12 S522 故选:D 【点评】本题考查等比数列的通项公式和前 n 项和公式的应用及二元一次方程的解法 10 (5 分)函数 f(x)2x4sinx,x,的图象大致是( ) A B C D 【分析】先验证函数是否满足奇偶性,由 f(x)2x4sin(x)(2x4sinx) f(x) ,故函数 f(x)为奇函数,其图象关于原点对称,排除 AB,再由函数的极值确 第 11 页(共 22 页) 定答案 【解答】解:函数 f(x)2x4sinx,f(x)2x4sin(x)(2x4sinx) f(x) ,故函数 f(x)为奇函数, 所以函数 f(x)2x
21、4sinx 的图象关于原点对称,排除 AB, 函数 f(x)24cosx,由 f(x)0 得 cosx,故 x2k(kZ) , 所以 x时函数取极值,排除 C, 故选:D 【点评】本题主要考查函数的性质,结合函数的奇偶性得出函数图象的对称性,是解决 函数图象选择题常用的方法 11 (5 分)已知 F1,F2是双曲线1(a0,b0)的左、右焦点,设双曲线的 离心率为 e若在双曲线的右支上存在点 M,满足|MF2|F1F2|,且 esinMF1F21,则 该双曲线的离心率 e 等于( ) A B C D 【分析】 由题意可得 sinMF1F2, 运用双曲线的定义可得 4b2c2a, 结合 a, b
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 云南省 曲靖 高考 数学 试卷 文科
链接地址:https://www.77wenku.com/p-141280.html