2019-2020学年四川省南充高中高三(下)第三次月考数学试卷(文科)含详细解答
《2019-2020学年四川省南充高中高三(下)第三次月考数学试卷(文科)含详细解答》由会员分享,可在线阅读,更多相关《2019-2020学年四川省南充高中高三(下)第三次月考数学试卷(文科)含详细解答(22页珍藏版)》请在七七文库上搜索。
1、已知全集 UR,Ax|x0,Bx|x1,则(UA)B( ) A (1,0 B (1,1) C (1,+) D0,1) 2 (5 分)设 6+x+(32x)i3+(y+5)i(i 为虚数单位) ,其中 x,y 是实数,则|x+yi|等 于( ) A5 B C2 D2 3 (5 分)埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的 是胡夫金字塔令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔 上的数字 “巧合” 如胡夫金字塔的底部周长如果除以其高度的两倍, 得到的商为 3.14159, 这就是圆周率较为精确的近似值金字塔底部形为正方形,整个塔形为正四棱锥,经古
2、代能工巧匠建设完成后,底座边长大约 230 米因年久风化,顶端剥落 10 米,则胡夫金 字塔现高大约为( ) A128.5 米 B132.5 米 C136.5 米 D140.5 米 4 (5 分)体育品牌 Kappa 的 LOGO 为可抽象为如图靠背而坐的两条优 美的曲线,下列函数中大致可“完美”局部表达这对曲线的函数是( ) A B 第 2 页(共 22 页) C D 5 (5 分)如图所示,半径为 2 的圆内有一个内接正方形,现往该圆内任投一点,此点落在 阴影部分的概率为( ) A B C D 6 (5 分)已知三角形 ABC 中,内角 A,B,C 所对的边分别为 a,b,c 若 bcos
3、Ca,b2+c2 bca2,则角 C( ) A B C D 7 (5 分)若 A,B 分别是直线 xy20 与 x 轴,y 轴的交点,圆 C: (x4)2+(y+4)2 8 上有任意一点 M,则AMB 的面积的最大值是( ) A6 B8 C10 D12 8 ( 5分 ) 在 ABC中 , 点F为 线 段BC上 任 一 点 ( 不 含 端 点 ), 若 ,则的最小值为( ) A1 B8 C2 D4 9 (5 分)将函数的图象向左平移个单位,所得图象对应的函数在区间 (m,m)上无极值点,则 m 的最大值为( ) A B C D 10 (5 分)过双曲线的左焦点 F1引圆 x2+y23 的切线,切
4、点为 T,延长 F1T 交 双曲线右支于 P 点,M 为线段 F1P 的中点,O 为坐标原点,则|MO|MT|( ) A1 B C D2 11(5 分) 已知四面体 PABC 的外接球的球心 O 在 AB 上, 且 PO平面 ABC, 2ACAB, 若四面体 PABC 的体积为,求球的表面积( ) A8 B12 C8 D12 12 (5 分)已知函数,设 af(log30.2) ,bf(3 0.2) ,cf( 第 3 页(共 22 页) 31.1) ,则( ) Aabc Bbac Ccba Dcab 二、填空题(本大题共二、填空题(本大题共 4 小题,每小题小题,每小题 5 分,共分,共 20
5、 分)分) 13 (5 分)已知向量,两向量的夹角为 ,则 14 (5 分)已知 x,y 满足约束条件,则的最大值为 15 (5 分)等比数列an的各项均为实数,其前 n 项和为 Sn,已知 S3,S6,则 a8 16 (5 分)设抛物线 y22x 的焦点为 F,过点 M(,0)的直线与抛物线相交于 A,B 两点,与抛物线的准线相交于 C,|BF|2,则BCF 和ACF 的面积之比为 三、解答题(共三、解答题(共 70 分分.解答应写出文字说明,证明过程或演算步骤)解答应写出文字说明,证明过程或演算步骤) 17 (12 分)某医院体检中心为回馈大众,推出优惠活动:对首次参加体检的人员,按 20
6、0 元次收费,并注册成为会员,对会员的后续体检给予相应优惠,标准如下: 体检次序 第一次 第二次 第三次 第四次 第五次及以上 收费比例 1 0.95 0.90 0.85 0.8 该体检中心从所有会员中随机选取了 100 位对他们在本中心参加体检的次数进行统计, 得到数据如下表: 体检次数 一次 两次 三次 四次 五次及以上 频数 60 20 12 4 4 假设该体检中心为顺客体检一次的成本费用为 150 元,根据所给数据,解答下列问题: (1) 已知某顾客在此体检中心参加了 3 次体检, 求这 3 次体检, 该体检中心的平均利润; (2)该体检中心要从这 100 人里至少体检 3 次的会员中
7、,按体检次数用分层抽样的方法 抽出 5 人,再从这 5 人中抽取 2 人发放纪念品,求抽到的 2 人中恰有 1 人体检 3 次的概 率 18 (12 分)已知数列an为等差数列,a7a210,且 a1,a6,a21依次成等比数列 (1)求数列an的通项公式; 第 4 页(共 22 页) (2)设 bn,数列bn的前 n 项和为 Sn,若 Sn,求 n 的值 19 (12 分) 如图, 已知多面体 PABCDE 的底面 ABCD 是边长为 2 的菱形, PA平面 ABCD, EDPA,且 PA2ED2 ()证明:平面 PAC平面 PCE; ()若 AC2,求多面体 PABCDE 的表面积 20
8、(12 分)已知直线 l:2x2aya20(a1)椭圆 C:,F1,F2分别为椭圆 的左右焦点 ()当直线 l 过右焦点 F2时,求 C 的标准方程; ()设直线 l 与椭圆 C 交于 A,B 两点,O 为坐标原点,若AOB 是钝角,求实数 a 的取值范围 21 (12 分)已知函数 f(x)lnx+a(x1)2 ()当 a1 时,求 f(x)的单调增区间; ()若 a4,且 f(x)在(0,1)上有唯一的零点 x0,求证:e 2x 0e 1 请考生在第请考生在第22、 23两题中任选一题作答, 并用两题中任选一题作答, 并用2B铅笔在答题卡上把所选题目的题号涂黑 注铅笔在答题卡上把所选题目的
9、题号涂黑 注 意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题如果多意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题如果多 做,则按所做的第一题计分做,则按所做的第一题计分选修选修 4-4:坐标系与参数方程:坐标系与参数方程 22 (10 分)在平面直角坐标系 xOy 中,曲线 C: (x1)2+(y+2)29以坐标原点 O 为 极点, x轴的正半轴为极轴, 建立极坐标系, 直线l的极坐标方程为 (1)求曲线 C 的极坐标方程和直线 l 的普通方程; (2)设直线与直线 l 交于点 M,与曲线 C 交于 P, Q 两点,求|OM|OP| |OQ|的值
10、 选修选修 4-5:不等式选讲:不等式选讲 23已知函数 f(x)|1ax| 第 5 页(共 22 页) (1)当 a1 时,解不等式; (2)若 f(1)M,f(2)M,求证: 第 6 页(共 22 页) 2019-2020 学年四川省南充高中高三(下)第三次月考数学试卷学年四川省南充高中高三(下)第三次月考数学试卷 (文科)(文科) 参考答案与试题解析参考答案与试题解析 一、选择题(本大题共一、选择题(本大题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分在每小题给出的四个选项中,只分在每小题给出的四个选项中,只 有一项是符合题目要求的)有一项是符合题目要求的) 1 (5 分
11、)已知全集 UR,Ax|x0,Bx|x1,则(UA)B( ) A (1,0 B (1,1) C (1,+) D0,1) 【分析】求出UA,再计算出结果 【解答】解:全集 UR,Ax|x0,Bx|x1, 则UA(,0, 则(UA)B(1,0, 故选:A 【点评】考本题查集合的交并补运算,基础题 2 (5 分)设 6+x+(32x)i3+(y+5)i(i 为虚数单位) ,其中 x,y 是实数,则|x+yi|等 于( ) A5 B C2 D2 【分析】利用复数相等、模的计算公式即可得出 【解答】解:6+x+(32x)i3+(y+5)i(i 为虚数单位) ,其中 x,y 是实数, 6+x3,32xy+
12、5,解得:x3,y4 则|x+yi|5 故选:A 【点评】本题考查了复数相等、模的计算公式,考查了推理能力与计算能力,属于基础 题 3 (5 分)埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的 是胡夫金字塔令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔 上的数字 “巧合” 如胡夫金字塔的底部周长如果除以其高度的两倍, 得到的商为 3.14159, 这就是圆周率较为精确的近似值金字塔底部形为正方形,整个塔形为正四棱锥,经古 代能工巧匠建设完成后,底座边长大约 230 米因年久风化,顶端剥落 10 米,则胡夫金 第 7 页(共 22 页) 字塔现高大约为(
13、) A128.5 米 B132.5 米 C136.5 米 D140.5 米 【分析】由已知求出底面周长,再由底部周长除以高度的两倍等于 3.14159 求得高,减去 10 得答案 【解答】解:设金字塔风化前的形状如图, AB230,其底面周长为 2304920, 由题意可得:, PO146.42 胡夫金字塔现高大约为 146.4210136.42 米 结合选项可得,胡夫金字塔现高大约为 136.5 米 故选:C 【点评】本题考查空间中的点、线、面间的距离计算,考查计算能力,是中档题 4 (5 分)体育品牌 Kappa 的 LOGO 为可抽象为如图靠背而坐的两条优 美的曲线,下列函数中大致可“完
14、美”局部表达这对曲线的函数是( ) 第 8 页(共 22 页) A B C D 【分析】由图象的对称性可排除 BD 选项,由 x0 时,函数图象中的值大于 0 排除 A 【解答】解:由图象观察可知,函数图象关于 y 轴对称,而选项 BD 为奇函数,其图象 关于原点对称,故不合题意; 对选项 A 而言,当 x0 时,f(x)0,故排除 A 故选:C 【点评】本题考查函数图象的运用,考查数形结合思想,属于基础题 5 (5 分)如图所示,半径为 2 的圆内有一个内接正方形,现往该圆内任投一点,此点落在 阴影部分的概率为( ) A B C D 【分析】由于圆的半径是 2,正方形的边长为 2,分别求其面
15、积然后代入几何概型 公式,即可得到答案 【解答】解:圆的半径为 2, 圆的面积是 224, 正方形的对角线长为:2r4,故其边长为:2; 正方形的面积 S正方形(2)28, 向圆内随机投一点,则该点落在阴影部分内的概率 P11; 故选:B 【点评】本题主要考查了几何概型,以及圆与正方形的面积的计算,解题的关键是弄清 几何测度,属于中档题 6 (5 分)已知三角形 ABC 中,内角 A,B,C 所对的边分别为 a,b,c 若 bcosCa,b2+c2 bca2,则角 C( ) A B C D 【分析】由已知结合余弦定理进行化简可求 B,A,进而可求 C 第 9 页(共 22 页) 【解答】解:因
16、为 bcosCa, 由余弦定理可得,ba, 化简可得,a2+c2b2, 所以 B, 又 b2+c2bca2, 所以 cosA,即 A, 所以 C 故选:A 【点评】本题主要考查了余弦定理在求解三角形中的应用,属于基础试题 7 (5 分)若 A,B 分别是直线 xy20 与 x 轴,y 轴的交点,圆 C: (x4)2+(y+4)2 8 上有任意一点 M,则AMB 的面积的最大值是( ) A6 B8 C10 D12 【分析】由题意画出图形,利用点到直线的距离公式求出 M 到直线 AB 距离的最大值, 则AMB 的面积的最大值可求 【解答】解:如图, 圆 C: (x4) 2+ (y+4)28 上的点
17、 M 到直线 AB 距离的最大值为 , A(2,0) ,B(0,2) ,则|AB| 则AMB 的面积的最大值是 S 故选:C 【点评】本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法,是中档题 8 ( 5分 ) 在 ABC中 , 点F为 线 段BC上 任 一 点 ( 不 含 端 点 ), 若 第 10 页(共 22 页) ,则的最小值为( ) A1 B8 C2 D4 【分析】由向量共线定理可得 2x+y1,然后利用 1 的代换,结合基本不等式即可求解 【解答】解:由于点 F 在线段 BC 上,由向量共线定理可得 2x+y1, 则, 故选:B 【点评】 本题主要考查了向量共线定理的应用
18、, 还考查了利用基本不等式求解最值中的 1 的代换技巧的应用 9 (5 分)将函数的图象向左平移个单位,所得图象对应的函数在区间 (m,m)上无极值点,则 m 的最大值为( ) A B C D 【分析】由题意利用函数 yAsin(x+)的图象变换规律,正弦函数的图象的单调性, 求得 m 的最大值 【解答】解:将函数的图象向左平移个单位,可得 ysin(2x+ )sin(2x+)的图象, 根据所得图象对应的函数在区间(m,m)上无极值点,2m+,且2m+ , 求得 m,则 m 的最大值为, 故选:A 【点评】本题主要考查函数 yAsin(x+)的图象变换规律,正弦函数的图象的单调 性,属于基础题
19、 10 (5 分)过双曲线的左焦点 F1引圆 x2+y23 的切线,切点为 T,延长 F1T 交 双曲线右支于 P 点,M 为线段 F1P 的中点,O 为坐标原点,则|MO|MT|( ) A1 B C D2 【分析】画出图形,利用双曲线的定义转化求解即可 【解答】解:由图象可得|MO|MT|MO|(|MF1|TF1|)|MT| 第 11 页(共 22 页) |MO|(|MF1|TF1|) |MO|MF1|+|TF1| , 故选:B 【点评】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力,是中档题 11(5 分) 已知四面体 PABC 的外接球的球心 O 在 AB 上, 且 PO平面
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 学年 四川省 南充 中高 第三次 月考 数学试卷 文科
链接地址:https://www.77wenku.com/p-141300.html