辽宁省部分重点中学协作体2020届高考模拟考试数学试卷(理科)含答案解析
《辽宁省部分重点中学协作体2020届高考模拟考试数学试卷(理科)含答案解析》由会员分享,可在线阅读,更多相关《辽宁省部分重点中学协作体2020届高考模拟考试数学试卷(理科)含答案解析(26页珍藏版)》请在七七文库上搜索。
1、2020 年高考数学模拟试卷(理科)(年高考数学模拟试卷(理科)(5 月份)月份) 一、选择题(共 12 小题). 1已知集合 Ax|x2x20,Bx|x0,则 AB( ) A1,2 B(1,2 C(0,2 D(2,+) 2已知复数 z 满足 z(1+i)1i(i 为虚数单位),则 z 的虚部为( ) Ai Bi C1 D1 3已知 , , ,则 a、b、c 的大小关系是( ) Aabc Bacb Ccab Dbca 4已知某企业 2020 年 4 月之前的过去 5 个月产品广告投入与利润额依次统计如表: 月份 11 12 1 2 3 广告投入(x 万元) 8.2 7.8 8 7.9 8.1
2、利润(y 万元) 92 89 89 87 93 由此所得回归方程为 ,若 2020 年 4 月广告投入 9 万元,可估计所获利润约 为( ) A100 万元 B101 万元 C102 万元 D103 万元 5设等差数列an的前 n 项和为 Sn,且 a3+a64+a4,则 S9( ) A18 B24 C48 D36 6人们通常以分贝(符号是 dB)为单位来表示声音强度的等级,3040 分贝是较理想的 安静环境,超过 50 分贝就会影响睡眠和休息,70 分贝以上会干扰谈话,长期生活在 90 分贝以上的嗓声环境,会严重影响听力和引起神经衰弱、头疼、血压升高等疾病,如果 突然暴露在高达 150 分贝
3、的噪声环境中, 听觉器官会发生急剧外伤, 引起鼓膜破裂出血, 双耳完全失去听力,为了保护听力,应控制噪声不超过 90 分贝,一般地,如果强度为 x 的声音对应的等级为 f(x)dB,则有 f(x)10lg ,则 90dB 的声音与 50dB 的声音强度之比为( ) A10 B100 C1000 D10000 7函数 ytan2x 图象的对称中心坐标为( ) A(2k,0),kZ B(k,0),kZ C , , D , , 8 已知二项式 的展开式中, 二项式系数之和等于 64, 则展开式中常数项等于 ( ) A240 B120 C48 D36 9已知函数 f(x) , , ,若 f(x)的最小
4、值为 f(1),则实数 a 的值不 可能是( ) A1 B2 C3 D4 10 已知三棱锥 ABCD 中, 侧面 ABC底面 BCD, ABC 是边长为 3 的正三角形, BCD 是直角三角形,且BCD90,CD2,则此三棱锥外接球的体积等于( ) A4 B C12 D 11已知过抛物线 y22px(p0)的焦点 F 的直线交抛物线于 A,B 两点,线段 AB 的延长 线交抛物线的准线 l 于点 C,若|BC|2,|FB|1,则|AB|( ) A3 B4 C6 D6 12已知 f(x) 恰有一个极值点为 1,则 t 的取值范围是( ) A , B , C , D , 二、填空题:本题共 4 小
5、题,每小题 5 分,共 20 分 13已知 x,y 满足约束条件 ,则 2xy 的最小值是 14 古代中国, 建筑工匠们非常注重建筑中体现数学美, 方形和圆形的应用比比皆是, 在唐、 宋时期的单檐建筑中较多存在 : 1 的比例关系, 这是当时工匠们着意设计的常见比例, 今天,A4 纸之所以流行的重要原因之一,就是它的长与宽的比无限接近 :1,我们称 这种满足了 :1 的矩形为“优美”矩形现有一长方体 ABCDA1B1C1D1,AD12 , AC2 ,AC 12 ,则此长方体的表面六个矩形中, “优美”矩形的个数为 15已知数列an的前 n 项和为 Sn,若 a11,2Snan+1+1,则 Sn
6、 16 已知椭圆 C1与双曲线 C2有相同的焦点 F1、 F2, 点 P 是 C1与 C2的一个公共点, PF1F2 是一个以 PF1为底的等腰三角形, |PF1|4, C1的离心率为 , 则 C 2的离心率为 三、解答题:共 70 分解答应写出文字说明、证明过程或演算步骤第 17-21 题为必考题, 每个试题考生都必须作答第 22、23 题为选考题,考生根据要求作答,(一)必考题:共 60 分 17已知 (2cosx,sinx), (cosx, cosx),且 f(x) (1)求 f(x)在 , 上的值域; (2)已知 a,b,c 分别为ABC 的三个内角 A,B,C 对应的边长,若 ,且
7、a 2,b+c4,求ABC 的面积 18已知正三棱柱 ABCA1B1C1中,ABAA12,D 是 BC 的中点 (1)求证:A1B平面 ADC1; (2)求锐二面角 DAC1C 的余弦值 19某工厂计划建设至少 3 个,至多 5 个相同的生产线车间,以解决本地区公民对特供商品 A 的未来需求经过对先期样本的科学性调查显示,本地区每个月对商品 A 的月需求量 均在 50 万件及以上,其中需求量在 50100 万件的频率为 0.5,需求量在 100200 万件 的频率为 0.3,不低于 200 万件的频率为 0.2用调查样本来估计总体,频率作为相应段 的概率,并假设本地区在各个月对本特供商品 A
8、的需求相互独立 (1)求在未来某连续 4 个月中,本地区至少有 2 个月对商品 A 的月需求量低于 100 万件 的概率 (2)该工厂希望尽可能在生产线车间建成后,车间能正常生产运行,但每月最多可正常 生产的车间数受商品 A 的需求量 x 的限制,并有如表关系: 商品 A 的月需求量 x (万件) 50x100 100x200 x200 车间最多正常运行个 数 3 4 5 若一个车间正常运行,则该车间月净利润为 1500 万元,而一个车间未正常生产,则该车 间生产线的月维护费(单位:万元)与月需求量有如下关系: 商品 A 的月需求量 x(万件) 50x100 100x200 未正常生产的一个车
9、间的月维 护费(万元) 500 600 试分析并回答该工厂应建设生产线车间多少个?使得商品 A 的月利润为最大 20已知椭圆 C: 1(ab0)过点 , ,F1(0,1),F2(0,1)是两 个焦点以椭圆 C 的上顶点 M 为圆心作半径为 r(r0)的圆, (1)求椭圆 C 的方程; (2)存在过原点的直线 l,与圆 M 分别交于 A,B 两点,与椭圆 C 分别交于 G,H 两点 (点 H 在线段 AB 上),使得 ,求圆 M 半径 r 的取值范围 21已知函数 f(x)ax+1+lnx (1)g(x)af(x) ,求函数 g(x)的单调区间: (2)对于任意 x0,不等式 f(x)xex恒成
10、立,求实数 a 的取值范围 (二)选考题:共 10 分请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第 一题计分选修 4-4:坐标系与参数方程 22已知平面直角坐标系 xOy 中,曲线 C1的方程为 1,以原点 O 为极点,x 轴的 正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 若将曲线 C1上 的所有点的横坐标缩小到原来的一半,纵坐标伸长到原来的 倍,得曲线 C2 (1)写出直线 l 和曲线 C2的直角坐标方程; (2)设点 P(1,0),直线 l 与曲线 C2的两个交点分别为 A,B,求 的值 选修 4-5:不等式选讲 23已知函数 f(x)ln(|x1|x+2|m)
11、 (1)当 m2 时,求函数 yf(x)的定义域; (2)已知函数 f(x)的定义域为 R,求实数 m 的取值范围 参考答案 一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一 项是符合题目要求的 1已知集合 Ax|x2x20,Bx|x0,则 AB( ) A1,2 B(1,2 C(0,2 D(2,+) 【分析】可以求出集合 A,然后进行交集的运算即可 解:Ax|1x2,Bx|x0, AB(0,2 故选:C 【点评】本题考查了描述法、区间的定义,一元二次不等式的解法,交集的运算,考查 了计算能力,属于基础题 2已知复数 z 满足 z(1+i)1i(i
12、为虚数单位),则 z 的虚部为( ) Ai Bi C1 D1 【分析】把已知等式变形,利用复数代数形式的乘除运算化简得答案 解:由 z(1+i)1i,得 z z 的虚部为1 故选:D 【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题 3已知 , , ,则 a、b、c 的大小关系是( ) Aabc Bacb Ccab Dbca 【分析】可以得出 , ,从而可得出 a,b,c 的大小关系 解:log0.32log0.310, , abc 故选:A 【点评】本题考查了对数函数、指数函数的单调性,指数函数的值域,考查了计算能力, 属于基础题 4已知某企业 2020 年 4 月之前的
13、过去 5 个月产品广告投入与利润额依次统计如表: 月份 11 12 1 2 3 广告投入(x 万元) 8.2 7.8 8 7.9 8.1 利润(y 万元) 92 89 89 87 93 由此所得回归方程为 ,若 2020 年 4 月广告投入 9 万元,可估计所获利润约 为( ) A100 万元 B101 万元 C102 万元 D103 万元 【分析】 先通过表格中的数据算出样本中心点 , , 再将其代入回归方程求出 a 的值, 从而得到回归直线方程,然后把 x9 代入,求出 的值即可得解 解:由表格中的数据可知, , , (8,90)在回归方程上,90128+a,解得 a6, 回归方程为 ,
14、把 x9 代入回归方程得, 故选:C 【点评】本题考查线性回归方程的性质,考查学生的运算能力,属于基础题 5设等差数列an的前 n 项和为 Sn,且 a3+a64+a4,则 S9( ) A18 B24 C48 D36 【分析】设等差数列an的公差为 d,由 a3+a64+a4找出首项 a1与公差 d 的关系式求出 a5,再代入前 n 项和的关系式求出 S9 解:设等差数列an的公差为 d,由 a3+a64+a4可得 a1+2d+a1+5d4+a1+3d,整理得: a1+4d4a5, 所以 S9 9a536 故选:D 【点评】本题主要考查等差数列的性质及基本量的求法,属于基础题 6人们通常以分贝
15、(符号是 dB)为单位来表示声音强度的等级,3040 分贝是较理想的 安静环境,超过 50 分贝就会影响睡眠和休息,70 分贝以上会干扰谈话,长期生活在 90 分贝以上的嗓声环境,会严重影响听力和引起神经衰弱、头疼、血压升高等疾病,如果 突然暴露在高达 150 分贝的噪声环境中, 听觉器官会发生急剧外伤, 引起鼓膜破裂出血, 双耳完全失去听力,为了保护听力,应控制噪声不超过 90 分贝,一般地,如果强度为 x 的声音对应的等级为 f(x)dB,则有 f(x)10lg ,则 90dB 的声音与 50dB 的声音强度之比为( ) A10 B100 C1000 D10000 【分析】本题根据题干中给
16、出的表达式分别计算出 90dB 的声音与 50dB 的声音对应的声 音强度,然后相比即可计算出结果,得到正确选项 解:由题意,可知 当声音强度的等级为 90dB 时,有 10lg 90, 即 lg 9, 则 109, 此时对应的强度 x1091012103, 当声音强度的等级为 50dB 时,有 10lg 50, 即 lg 5, 则 105, 此时对应的强度 x1051012107, 90dB 的声音与 50dB 的声音强度之比为 10 3(7)10410000 故选:D 【点评】 本题主要考查已知函数值求对应的 x 的值, 函数在实际生活的应用, 以及指数、 对数的运算,考查了转化思想,以及
17、逻辑思维能力和数学运算能力本题属中档题 7函数 ytan2x 图象的对称中心坐标为( ) A(2k,0),kZ B(k,0),kZ C , , D , , 【分析】直接利用正切函数的图象和性质的应用求出结果 解:由于函数 ytanX 的对称中心为( , )(kZ), 令 2x ,解得 x , 故函数 ytan2x 的对称中心为( , )(kZ), 故选:D 【点评】本题考查的知识要点:正切函数的图象和性质的应用,主要考查学生的运算能 力和转换能力及思维能力,属于基础题型 8 已知二项式 的展开式中, 二项式系数之和等于 64, 则展开式中常数项等于 ( ) A240 B120 C48 D36
18、【分析】先根据二项式系数的性质求出 n 的值,再利用通项公式求得展开式中常数项 解:二项式 的展开式中,二项式系数之和等于 2n64,则 n6, 故展开式的通项公式为 Tr+1 26r ,令 3 0,求得 r2, 可得展开式中常数项等于 24240, 故选:A 【点评】 本题主要考查二项式定理的应用, 二项展开式的通项公式, 二项式系数的性质, 属于基础题 9已知函数 f(x) , , ,若 f(x)的最小值为 f(1),则实数 a 的值不 可能是( ) A1 B2 C3 D4 【分析】根据题意,直接将 a1 代入,计算函数的最小值为 f(2),不合题意,由此即 可得出正确选项 解:当 a1
19、时, , , , 则当 x1 时,f(x)(x1)2+77f(1); 当 x1 时, ,当 x2 时取等号; 综上,函数的最小值为 f(2),不合题意; 结合单项选择的特征可知,实数 a 的值不可能为 1 故选:A 【点评】本题考查分段函数最值的求法,作为选择题,采用代值判断的方法能够快速解 决问题,是考试中的一项有效方法,应合理运用,本题属于基础题 10 已知三棱锥 ABCD 中, 侧面 ABC底面 BCD, ABC 是边长为 3 的正三角形, BCD 是直角三角形,且BCD90,CD2,则此三棱锥外接球的体积等于( ) A4 B C12 D 【分析】把三棱锥放入长方体中,根据长方体的结构特
20、征求出三棱锥外接球的半径,再 计算三棱锥外接球的体积 解:三棱锥 ABCD 中,侧面 ABC底面 BCD,把该三棱锥放入长方体中,如图所示; 且 AM AB ; 设三棱锥外接球的球心为 O,则 AG AM ,OG CD1, 所以三棱锥外接球的半径为 ROA 2, 所以三棱锥外接球的体积为 V 故选:B 【点评】本题考查了三棱锥外接球的体积计算问题,也考查了数形结合与转化思想,是 中档题 11已知过抛物线 y22px(p0)的焦点 F 的直线交抛物线于 A,B 两点,线段 AB 的延长 线交抛物线的准线 l 于点 C,若|BC|2,|FB|1,则|AB|( ) A3 B4 C6 D6 【分析】设
21、 A、B 在准线上的射影分别为为 M、N,通过三角形相似,求解 AF,即可求 解 解:设 A、B 在准线上的射影分别为为 M、N, 过抛物线 y22px(p0)的焦点 F 的直线交抛物线于 A,B 两点,线段 AB 的延长线交 抛物线的准线 l 于点 C,若|BC|2,|FB|1,BNCAMC, 可得: ,可得 AFAM3, ABAF+FB4, 故选:B 【点评】 本题考查抛物线的定义及其应用, 抛物线的几何性质, 过焦点的弦的弦长关系, 平面几何知识,转化化归的思想方法,属中档题 12已知 f(x) 恰有一个极值点为 1,则 t 的取值范围是( ) A , B , C , D , 【分析】先
22、求导数,验证 x1 是极值点,然后从导函数中分离出 x1,再说明剩余的部 分没有变号根即可 解:由已知得 显然 x1 是 f(x)的变号零点,即为原函数的极值点,所以只需 ex2t(x+2)0 在 (0,+)上恒成立即可 即 (x0)恒成立 令 g(x) (x0), , 故 g(x)是增函数,又因为当 x0 时, , 所以 g(x) ,所以 ,即 即为所求 故选:D 【点评】本题考查利用导数研究函数的极值,最值,以及解决不等式恒成立问题同时 考查学生利用函数思想、转化思想解决问题的能力,属于较难的中档题 二、填空题:本题共 4 小题,每小题 5 分,共 20 分 13已知 x,y 满足约束条件
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 辽宁省 部分 重点中学 协作 2020 高考 模拟考试 数学试卷 理科 答案 解析
链接地址:https://www.77wenku.com/p-141468.html