2020年广东省广州市高考数学二模试卷(文科)含答案解析
《2020年广东省广州市高考数学二模试卷(文科)含答案解析》由会员分享,可在线阅读,更多相关《2020年广东省广州市高考数学二模试卷(文科)含答案解析(26页珍藏版)》请在七七文库上搜索。
1、2020 年广州市高考数学二模试卷(文科)年广州市高考数学二模试卷(文科) 一、选择题(共 12 小题). 1若集合 Ax|2x0,Bx|0x1,则 AB( ) A0,2 B0,1 C1,2 D1,2 2已知 i 为虚数单位,若 z (1+i)2i,则|z|( ) A2 B C1 D 3已知角 的项点与坐标原点重合,始边与 x 轴的非负半轴重合,若点 P(2,1)在角 的终边上,则 tan( ) A2 B C D2 4若实数 x,y 满足 ,则 z2xy 的最小值是( ) A2 B C4 D6 5已知函数 f(x)1+x3,若 aR,则 f(a)+f(a)( ) A0 B2+2a3 C2 D2
2、2a3 6若函数 f(x)Asin(2x+)(A0,0 )的部分图象如图所示,则下列叙述正 确的是( ) A( ,0)是函数 f(x)图象的一个对称中心 B函数 f(x) 的图象关于直线 x 对称 C函数 f(x) 在区间 , 上单调递增 D函数 f(x)的图象可由 yAsin 2x 的图象向左平移 个单位得到 7周髀算经中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”我国古 代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想现将铜钱抽象成如 图所示的图形,其中圆的半径为 r,正方形的边长为 a(0ar),若在圆内随机取点, 得到点取自阴影部分的概率是 p,则圆周率 的值为(
3、) A B C D 8在三棱柱 ABCA1B1C1中,E 是棱 AB 的中点,动点 F 是侧面 ACC1A1(包括边界)上一 点,若 EF平面 BCC1B1,则动点 F 的轨迹是( ) A线段 B圆弧 C椭圆的一部分 D抛物线的一部分 9已知函数 , , ,则 f(x)f(x+1)的解集为( ) A(1,+) B(1,1) C , D , 10ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 bcosC+ccosB6,c3,B2C, 则 cosC 的值为( ) A B C D 11若关于 x 的不等式 2lnxax2+(2a2)x+1 恒成立,则 a 的最小整数值是( ) A0 B1
4、 C2 D3 12过双曲线 C: 1(a0,b0)右焦点 F2作双曲线一条渐近线的垂线,垂足 为 P,与双曲线交于点 A,若 3 ,则双曲线 C 的渐近线方程为( ) Ay2x Byx Cy x Dy x 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分。 13已知向量 (k,1), (4,2),若 与 共线,则实数 k 的值为 14已知等比数列an是单调递增数列,Sn为an的前 n 项和,若 a24,a1+a310,则 S4 15斜率为 的直线 1 过抛物线 y22px(p0)的焦点,若直线 1 与圆(x2)2+y24 相切,则 p 16正四棱锥 PABCD 的底面边长为 2,侧
5、棱长为 2 ,过点 A 作一个与侧棱 PC 垂直的 平面 ,则平面 被此正四棱锥所截的截面面积为 ,平面 将此正四棱锥分成的 两部分体积的比值为 三、 解答题: 共 70 分。 解答应写出文字说明、 证明过程或演算步骤。 第 1721 题为必考题, 每个试题考生都必须作答第 22、23 题为选考题,考生根据要求作答。(一)必考题:共 60 分。 17已知数列an的前 n 项和为 Sn,且 Snn(n+2)(nN*) (1)求数列an的通项公式; (2)设 bn ,求数列bn的前 n 项和 Tn 18如图,在三棱柱 ABCA1B1C1中,侧面 BB1C1C 为菱形,ACAB1,B1CBC1O (
6、1)求证:B1CAB; (2)若CBB160,ACBC,三棱锥 ABB1C 的体积为 1,且点 A 在侧面 BB1C1C 上的投影为点 O,求三棱锥 ABB1C 的表面积 19 全民健身旨在全面提高国民体质和健康水平, 倡导全民做到每天参加一次以上的健身活 动,学会两种以上健身方法,每年进行一次体质测定为响应全民健身号召,某单位在 职工体测后就某项健康指数(百分制)随机抽取了 30 名职工的体测数据作为样本进行调 查, 具体数据如茎叶图所示, 其中有 1 名女职工的健康指数的数据模糊不清 (用 x 表示) , 已知这 30 名职工的健康指数的平均数为 76.2 (1)根据茎叶图,求样本中男职工
7、健康指数的众数和中位数; (2)根据茎叶图,按男女用分层抽样从这 30 名职工中随机抽取 5 人,再从抽取的 5 人 中随机抽取 2 人,求抽取的 2 人都是男职工的概率; (3)经计算,样本中男职工健康指数的平均数为 81,女职工现有数据(即剔除 x)健康 指数的平均数为 69,方差为 190,求样本中所有女职工的健康指数的平均数和方差(结 果精确到 0.1) 20已知椭圆 C: 1(ab0)过点 A(2,0),且离心率为 (1)求椭圆 C 的方程; (2)若斜率为 k(k0)的直线 1 与椭圆 C 交于不同的两点 M,N,且线段 MN 的垂直 平分线过点( ,0),求 k 的取值范围 21
8、已知函数 f(x)lnxsinx,记 f(x)的导函数为 f(x) (1)若 h(x)ax f(x)是(0,+)上的单调递增函数,求实数 a 的取值范围; (2)若 x(0,2),试判断函数 f(x)的极值点个数,并说明理由 (二)选考题:共 10 分请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第 一题计分。选修 4-4:坐标系与参数方程 22在直角坐标系 xOy 中,曲线 C1的参数方程为 ( 为参数),以坐标原点 O 为极点,x 轴正半轴为极轴建立极坐标系,曲线 C2的极坐标方程为 2 (1)写出曲线 C1和 C2的直角坐标方程; (2) 已知 P 为曲线 C2上的动点,
9、 过点 P 作曲线 C1的切线, 切点为 A, 求|PA|的最大值 选修 4-5:不等式选讲 23已知函数 f(x)|x+1|2x2|的最大值为 M,正实数 a,b 满足 a+bM (1)求 2a2+b2的最小值; (2)求证:aabbab 参考答案 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1若集合 Ax|2x0,Bx|0x1,则 AB( ) A0,2 B0,1 C1,2 D1,2 【分析】求出集合 A,利用交集定义能求出 AB 解:集合 Ax|2x0x|x2,Bx|0x1, ABx|0x10,1 故选:B 2已知
10、 i 为虚数单位,若 z (1+i)2i,则|z|( ) A2 B C1 D 【分析】由已知条件,结合复数的运算可得 z1+i,由模长公式可得答案 解:z (1+i)2i, z 1+i, 故|z| 故选:B 3已知角 的项点与坐标原点重合,始边与 x 轴的非负半轴重合,若点 P(2,1)在角 的终边上,则 tan( ) A2 B C D2 【分析】直接利用任意角的三角函数,求解即可 解:点 P(2,1)在角 的终边上, tan , 故选:C 4若实数 x,y 满足 ,则 z2xy 的最小值是( ) A2 B C4 D6 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合目标函数
11、z2x y 的最小值 解:实数 x,y 满足 ,边表示的可行域如图: 化简 z2xy 为 y2xz,z 是直线的截距, 故当 z2xy 过点 A 时,截距取得最大值,此时 z 有最小值, 由 解得 A( , ) 故目标函数 z2xy 的最小值为 2 ; 故选:B 5已知函数 f(x)1+x3,若 aR,则 f(a)+f(a)( ) A0 B2+2a3 C2 D22a3 【分析】根据题意,由函数的解析式求出 f(a)与 f(a)的表达式,进而计算可得答 案 解:根据题意,函数 f(x)1+x3,则 f(a)1+a3,f(a)1+(a)31a3, 则有 f(a)+f(a)2; 故选:C 6若函数
12、f(x)Asin(2x+)(A0,0 )的部分图象如图所示,则下列叙述正 确的是( ) A( ,0)是函数 f(x)图象的一个对称中心 B函数 f(x) 的图象关于直线 x 对称 C函数 f(x) 在区间 , 上单调递增 D函数 f(x)的图象可由 yAsin 2x 的图象向左平移 个单位得到 【分析】先由图象可知 A2,再把点( , )代入函数解析式,结合 0 ,可求 得 ,从而确定函数的解析式为 f(x) 然后根据正弦函数的中心对 称、轴对称和单调性以及平移变换法则逐一判断每个选项即可 解:由图可知,A2, 函数 f(x)经过点( , ), , , ,即 , , 0 ,k1, 函数 f(x
13、) 令 , ,则 , ,当 k0 时,对称中心为 , , 即 A 正确; 令 , ,则 , ,不存在 k 使其对称轴为 x ,即 B 错误; 令 , , ,则 , , ,当 k0 时,单调递增区间为 , , ,即 C 错误; y2sin2x 的图象向左平移 个单位得到 y2sin2(x ) f(x),即 D 错误 故选:A 7周髀算经中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”我国古 代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想现将铜钱抽象成如 图所示的图形,其中圆的半径为 r,正方形的边长为 a(0ar),若在圆内随机取点, 得到点取自阴影部分的概率是 p,则圆周率
14、 的值为( ) A B C D 【分析】计算圆形钱币的面积和正方形的面积,求出对应面积比得 p,则 可求 解:圆形钱币的半径为 rcm,面积为 S圆 r2; 正方形边长为 acm,面积为 S正方形a2 在圆形内随机取一点,此点取自黑色部分的概率是 p 圆 正方形 圆 1 , 则 故选:A 8在三棱柱 ABCA1B1C1中,E 是棱 AB 的中点,动点 F 是侧面 ACC1A1(包括边界)上一 点,若 EF平面 BCC1B1,则动点 F 的轨迹是( ) A线段 B圆弧 C椭圆的一部分 D抛物线的一部分 【分析】分别取 AC,A1C1,A1B1的中点 N,F,M,连接 ME,MF,NE,EF,可得
15、 N, E,M,F 共面,且可得使 EF平面 BCC1B1,所以 F 在线段 FN 上 解:分别取 AC,A1C1,A1B1的中点 N,F,M,连接 ME,MF,NE,EF, 因为 E 为 AB 的中点,可得 NEBC 且 NE ,FMB1C1 ,MF B1C1, 所以 N,E,M,F 共面,所以可得 MEBB1,BEBC, 而 NEMEE, BCBB1B, 所以面 NEMF面 BC1, 而 EF面 MN, 所以 EF面 BC1, 所以要使 EF平面 BCC1B1,则动点 F 的轨迹为线段 FN 故选:A 9已知函数 , , ,则 f(x)f(x+1)的解集为( ) A(1,+) B(1,1)
16、 C , D , 【分析】由题意利用函数的单调性,分类讨论求得 x 的范围 解:函数 , , ,则 f(x)f(x+1), 当 x1 时,不等式 f(x)f(x+1),即 x21(x+1)21,求得 x1 当 x1 时,不等式 f(x)f(x+1),即 log2xlog2(x+1),求得 x1 综上可得,不等式的解集为( ,+), 故选:C 10ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 bcosC+ccosB6,c3,B2C, 则 cosC 的值为( ) A B C D 【分析】由已知利用二倍角的正弦函数公式,正弦定理可得 b6cosC,利用两角和的正 弦函数公式, 正弦定理
17、化简已知等式可得 a2c6, 进而根据余弦定理即可求解 cosC 的 值 解:c3,B2C, sinBsin2C2sinCcosC, 由正弦定理 ,可得 ,可得 b6cosC, bcosC+ccosB62c,由正弦定理可得 sinBcoC+sinCcosB2sinC,可得 sin(B+C) sinA2sinC,可得 a2c6, cosC ,可得 cos2 C , ca,C 为锐角, 解得 cosC 故选:D 11若关于 x 的不等式 2lnxax2+(2a2)x+1 恒成立,则 a 的最小整数值是( ) A0 B1 C2 D3 【分析】问题等价于 a 在(0,+)恒成立,令 g(x) ,求出
18、g(x) 的最大值,求出 a 的范围即可 解:若关于 x 的不等式 2lnxax2+(2a2)x+1 恒成立, 问题等价于 a 在(0,+)恒成立, 令 g(x) ,则 g(x) , 令 h(x) xlnx,(x0), 则 h(x) 0, 故 h(x)在(0,+)递减, 不妨设 h(x)0 的根是 x0, 则 lnx0 x0, 则 x(0,x0)时,g(x)0,g(x)递增, x(x0,+)时,g(x)0,g(x)递减, g(x)maxg(x0) , h(1)10,h(2) ln20, 1x02, 1, a1,a 的最小整数值是 1, 故选:B 12过双曲线 C: 1(a0,b0)右焦点 F2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 广东省 广州市 高考 数学 试卷 文科 答案 解析
文档标签
- 广州市协和中学
- 2020-2021广州市海珠区七年级上数学
- 2019年广东省广州市语文期末测试题
- 2020年广东省广州市高考数学二模试卷理科含答案解析
- 2020年广东省广州市高考数学二模试卷文科含答案解析
- 2020年广东省湛江市高考文科数学试卷二含答案解析
- 2020年广东省高考数学文科一模试卷含答案解析
- 2020年陕西省宝鸡市高考数学二模文科试卷含答案
- 广州 2020 数学
- 2019年广东省高考数学二模试卷理科含答案解析
- 2020年广东省湛江市高考数学文科模拟试卷二含答案解析
- 2020年宁夏中卫市高考数学文科二模试卷含答案解析
- 2019年广东省广州市高考数学一模试卷文科含答案解析
- 2018年广东省广州市高考数学二模试卷理科含答案解析
- 广东省广州市2019年高考二模语文试卷含答案
- 2020年广东省广州市高考数学二模试卷文科含详细解答
- 2020年广东省广州市高考数学二模试卷理科含详细解答
- 2019年广东省广州市高考数学二模试卷文科含答案解析
- 2019年广东省肇庆市高考数学二模试卷理科含答案解析
- 2020年广东省广州市中考数学基础训练二含答案
链接地址:https://www.77wenku.com/p-142779.html