【精品】六年级奥数培优教程讲义第13讲-三角形面积计算(教师版)
《【精品】六年级奥数培优教程讲义第13讲-三角形面积计算(教师版)》由会员分享,可在线阅读,更多相关《【精品】六年级奥数培优教程讲义第13讲-三角形面积计算(教师版)(9页珍藏版)》请在七七文库上搜索。
1、 第第 1313 讲讲 三角形面积计算三角形面积计算 教学目标 掌握三角形的面积计算公式; 学会使用拆补法求解三角形面积; 通过题目中给定比例关系求解面积比。 计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系, 会使你感到无从下手。这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,会使你感到无从下手。这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化, 再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小再运用我们已有的基本几何知识,适当添加
2、辅助线,搭一座连通已知条件与所求问题的小 “桥”,就会使“桥”,就会使你顺利达到目的。有些平面图形的面积计算必须借助于图形本身的特征,添你顺利达到目的。有些平面图形的面积计算必须借助于图形本身的特征,添 加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析 推导,方能寻求出解题的途径。推导,方能寻求出解题的途径。 例例 1 1、已知图 121 中,三角形 ABC 的面积为 8 平方厘米,AEED,BD=2 3 BC,求阴影部分的 面积。 【解析】阴影部分为两个三角形,但三角形 AEF 的
3、面积无法直接 计算。由于 AE=ED,连接 DF,可知 SAEF=SEDF(等底等高),采用 移补的方法,将所求阴影部分转化为求三角形 BDF 的面积。 因为 BD=2 3 BC,所以 S BDF2SDCF。又因为 AEED,所以 SABFS BDF2SDCF。因此,SABC5SDCF。由于 SABC8 平方厘米,所以 S DCF851.6(平方厘米),则阴影部分的面积为: 1.623.2(平方厘米)。 例例 2 2、在ABC 中(图 12-2),BD=DE=EC,CF:AC=1:3。若ADH 的面积比HEF 的面积多 24 典例分析 知识梳理 教学目标 A B C F E D 121 平方厘
4、米,求三角形 ABC 的面积是多少平方厘米? 【解析】ADH 的面积比HEF 的面积多 24 平方厘米, 则三角形 ADE 的面积比三角形 FDE 的面积多 24 平方厘米, 又因三角形 FDE 和三角形 FEC 的面积相等, 也就是说三角形 AEC 比三角形 FEC 的面积多 24 平方厘米, 又因多出的 24 平方厘米,是三角形 AEC 的面积的 23, 所以三角形 AEC 的面积是 242/3=36 平方厘米, 则三角形 ABC 的面积是 361/3=108(平方厘米), 答:三角形 ABC 的面积是 108 平方厘米。 例例 3 3、两条对角线把梯形 ABCD 分割成四个三角形,如图
5、123 所示,已知两个三角形的面积, 求另两个三角形的面积各是多少? 【解析】 已知 SBOC是 SDOC的 2 倍, 且高相等, 可知: BO2DO; 从 SABD与 SACD相等(等底等高)可知:SABO等于 6,而ABO 与AOD 的高相等, 底是AOD 的 2 倍。 所以AOD 的面积为: 623。 答:AOD的面积是 3。 例例 4 4、四边形 ABCD 的对角线 BD 被 E、F 两点三等分,且四边形 AECF 的面积为 15 平方厘米。 求四边形 ABCD 的面积(如图 124 所示)。 【解析】由于 E、F 三等分 BD,所以三角形 ABE、AEF、AFD 是 等底等高的三角形
6、,它们的面积相等。同理,三角形 BEC、CEF、 CFD 的面积也相等。 由此可知, 三角形 ABD 的面积是三角形 AEF 面积的 3 倍,三角形 BCD 的面积是三角形 CEF 面积的 3 倍,从 而得出四边形 ABCD 的面积是四边形 AECF 面积的 3 倍。 15345(平方厘米) 答:四边形 ABCD 的面积为 45 平方厘米。 例例 5 5、如图 125 所示,BO2DO,阴影部分的面积是 4 平方厘米。那么,梯形 ABCD 的面积是 多少平方厘米? 12-2 B C D A O 12-3 12 6 124 A B C D E F 【解析】因为 BO2DO,取 BO 中点 E,连
7、接 AE。根据三角形 等底等高面积相等的性质,可知 SDBCSCDA;SCOBSDOA4, 类推可得每个三角形的面积。所以: SCDO422(平方厘米) SDAB4312 平方厘米 S梯形 ABCD12+4+218(平方厘米) 答:梯形 ABCD 的面积是 18 平方厘米。 例例 6 6、如图 1817 所示,长方形 ADEF 的面积是 16,三角形 ADB 的面积是 3,三角形 ACF 的面 积是 4,求三角形 ABC 的面积。 【解析】连接 AE。仔细观察添加辅助线 AE 后,使问题可有如下解法。 由图上看出:三角形 ADE 的面积等于长方形 面积的一半(162)8。用 8 减去 3 得到
8、三角形 ABE 的面积为 5。 同理, 用 8 减去 4 得到三角形 AEC 的面积也为 4。因此可知三角形 AEC 与三角形 ACF 等底等高,C 为 EF 的中点,而三角形 ABE 与三角 形 BEC 等底,高是三角形 BEC 的 2 倍,三角形 BEC 的面积为 522.5,所以,三角形 ABC 的 面积为 16342.56.5。 例例 7 7、如图,某公园的外轮廓是四边形 ABCD,被对角线 AC、 BD 分成四个部分。AOB 的面积是 2 平方千米,COD 的 面积是 3 平方千米,公园陆地面积为 6.92 平方千米,那么 人工湖的面积是多少平方千米? 【解析】由BOC 与DOC 等
9、高 h1,BOA 与DOA等高 h2, 利用面积公式: 1 1 BO h2 2 , 1 1 DO h3 2 ,得 BO:DO=2:3, 即 3 DOBO 2 ,又 2 1 BO h1 2 得 22 11 323 DO hBO hBO h 22 232 。 则湖的面积为: 3 1236.920.58 2 (平方千米) B A D C O E 125 126 O D C B A 课堂狙击课堂狙击 1、如图所示,AEED,BC=3BD,SABC30 平方厘米。求阴影部分的面积。 【解析】阴影部分为两个三角形,但三角形 AEF 的面积无法直接 计算。 由于 AE=ED,连接 DF,可知 SAEF=SE
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 六年级 奥数培优 教程 讲义 13 三角形 面积 计算 教师版
链接地址:https://www.77wenku.com/p-144106.html