2020届湖北省武汉市武昌区高中毕业生六月供题数学试题(理科)含答案
《2020届湖北省武汉市武昌区高中毕业生六月供题数学试题(理科)含答案》由会员分享,可在线阅读,更多相关《2020届湖北省武汉市武昌区高中毕业生六月供题数学试题(理科)含答案(10页珍藏版)》请在七七文库上搜索。
1、 武昌区2020届高中毕业生六月供题 理科数学 一、选择题:本题共 一、选择题:本题共 12 小题,每小题小题,每小题 5 分,共 分,共 60 分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.设集合9,)48(log 2 3 xxBxyxA,则BA A.(-3,1)B.(-2,-2)C.(-3,2)D.(-2,1) 2.设复数z满足48 zzi,则z的虚部为 A. 3B. 4C. 4iD. 3i 3.已知等差数列 n a的前 n 项和为 n S, 14 10aS ,则 3 4 a a A. 2B. 3 4 C. 4
2、3 D. 2 1 4.比较大小:2log3a, 1 . 0 eb, 2 1 ln ec() A.bcaB.bacC.abcD.cba 5.对),(1x,“ x xe”是“e”的 A.充分必要条件B.既不充分也不必要条件 C.充分不必要条件D.必要不充分条件 6.若直线1 kxy与圆42 2 2 yx相交,且两个交点位于坐标平面的同一象限,则k 的取值范围是 A.) 3 4 , 0(B.) 3 4 , 4 1 - (C.) 4 3 , 0(D.) 4 3 , 4 1 - ( 7.如图在ABC 中,DBAD3,P为CD上一点,且ABACmAP 2 1 ,则 m 的值为 A. 2 1 B. 3 1
3、C. 4 1 D. 5 1 8.某地一条主干道上有 46 盏路灯,相邻两盏路灯之间间隔 30 米,有关部门想在所有相邻路 灯间都新添一盏, 假设工人每次在两盏灯之间添新路灯是随机, 并且每次添新路灯相互独 立.新添路灯与左右相邻路灯的间隔都不小于 10 米是符合要求的, 记符合要求的新添路灯 数量为,则 D A.30B.15C.10D.5 P A D B C 9.已知定义域为 R 的函数0)2sin()(xxf,满足1) 1 (f,下列结论中正确 的个数为 )()2(xfxf函数)(xfy 的图象关于点(6,0)对称 函数) 1( xfy奇函数) 1()2(xfxf A.1 个B.2 个C.3
4、 个D.4 个 10.函数xxxxf(2cossin2)(),的零点个数为 A.2 个B.4 个C.6 个D.8 个 11.祖暅原理指出:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几 何体的体积相等, 例如在计算球的体积时, 构造一个底面半径和高都与球的半径相等的圆 柱,与半球(如图)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶 点,圆柱上底面为底面的圆锥后得到一新几何体(如图),用任何一个平行于底面的平 面去截它们时, 可证得所截得的两个截面面积相等, 由此可证明新几何体与半球体积相等. 现将椭圆)01 2 2 2 2 ba b y a x (所围成的平面图形
5、绕y轴旋转一周后得一橄榄状的几何 体,类比上述方法,运用祖暅原理可求得其体积等于 图图 A.ba2 3 4 B. 2 3 4 abC.ba22D. 2 2 ab 12.函数 1 1 )(),0(27)12(2)( 2 x xgaaxaaxxf,若)(xfy 与)(xgy 的 图像恰有三个公共点,则 ? 的取值范围为 A.),(,280026-B.),(,240024- C.),(,280080-D.),(,120026- 二、填空题二、填空题:本题共本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分。分。 13.曲线)2ln(2xy在点(-1,0)处的切线方程为. 14.医院某科
6、室有 6 名医生,其中主任医师有 2 名,现将 6 名医生分成 2 组,一组有 2 人, 另一组有 4 人,那么每一组都有一名主任医师的概率为. 15.椭圆 C:1 39 22 yx 和双曲线 E:)01 9 2 22 b b yx (的左右顶点分别为 A,B,点 M 为 椭圆 C 的上顶点,直线 AM 与双曲线 E 的右支交于点 P,且212PB,则双曲线的离 心率为. 16.已知正四棱锥ABCDP的底面边长为23,侧棱6PA,E为侧棱PB上一点且 EBPE 2 1 ,在PAC内(包括边界)任意取一点F,则EFBF 的取值范围为 . 三三、解答题解答题:共共 70 分分。解答题应写出文字说明
7、解答题应写出文字说明、证明过程或演算步骤证明过程或演算步骤。第第 1721 题为必考题为必考 题,每个试题考生都必须作答。第题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。题为选考题,考生根据要求作答。 (一)必考题:共(一)必考题:共 60 分分 17.(本题满分 12 分) 已知ABC中三个内角CBA,所对的边为cba,,且2, 3 bB. (1)若 3 62 c,求Asin的值; (2)当CBCA取得最大值时,求 A 的值. 18.(本题满分 12 分) 如图,已知四棱锥ABCDP中,PDPA ,底面ABCD为菱形, o 60BAD,点 E 为的 AD 中点.
8、(1)证明:平面PBC平面PBE; (2)若ABPE ,二面角BPAD的余弦值为 5 5 ,且4BC,求PE的长. P E C B A D 19.(本题满分 12 分) 已知O为原点,抛物线C:)80(2 2 ppyx的准线l与 y 轴的交点为H,P为抛物 线C上横坐标为 4 的点,已知点P到准线的距离为 5. (1)求C的方程; (2)过C的焦点F作直线l与抛物线C交于A,B两点,若以AH为直径的圆过B,求 |BFAF 的值. 20.(本题满分 12 分) 武汉某商场为促进市民消费,准备每周随机的从十个热门品牌中抽取一个品牌送消费券, 并且某个品牌被抽中后不再参与后面的抽奖, 没有抽中的品牌
9、则继续参加下周抽奖, 假设 每次抽取时各品牌被抽到的可能性相同,每次抽取也相互独立. (1)求某品牌到第三次才被抽到的概率; (2)为了使更多品牌参加活动,商场做出调整,从第一周抽取后开始每周会有一个新的品 牌补充进抽取队伍,品牌 A 从第一周就开始参加抽奖,商场准备开展半年(按 26 周计算) 的抽奖活动,记品牌 A 参与抽奖的次数为 X,试求 X 的数学期望(精确到 0.01). 参考数据:0.0800.924,0.0720.925 . 21.(本题满分 12 分) 已知函数1e)(mxxf x (m0),对任意 x0,都有0)(xf . (1)求实数 m 的取值范围; (2)求证:x1,
10、1ln) 1 (xx x xf. (二)选考题:共(二)选考题:共 10 分。请考生在第分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的题中任选一题作答。如果多做,则按所做的 第一题计分。第一题计分。 22.选修 4-4:坐标系与参数方程(10 分) 在 直 角 坐 标 系 xOy 中 , 曲 线C的 参 数 方 程 为 ( sin1 cos1 y x 为 参 数), 直 线 04: yxl,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系. (1)求直线l和曲线C的极坐标方程; (2) 若直线: 0 l(R) 与直线l相交于点A,与曲线C相交于不同的两点NM,, 求OAO
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 湖北省 武汉市 武昌 高中毕业生 六月 数学试题 理科 答案
链接地址:https://www.77wenku.com/p-145654.html