【全国Ⅱ卷】2020年普通高校招生全国统一考试数学(理科)试卷(含答案解析)
《【全国Ⅱ卷】2020年普通高校招生全国统一考试数学(理科)试卷(含答案解析)》由会员分享,可在线阅读,更多相关《【全国Ⅱ卷】2020年普通高校招生全国统一考试数学(理科)试卷(含答案解析)(28页珍藏版)》请在七七文库上搜索。
1、2020 年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试 理科数学理科数学 注意事项:注意事项: 1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分本试卷满分 150 分分. 2.作答时,将答案写在答题卡上作答时,将答案写在答题卡上.写在本试卷上无效写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共一、选择题:本题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分分.在每小题给出的四个选项中,只有一项在每小题给出的四个选
2、项中,只有一项 是符合题目要求的是符合题目要求的. 1.已知集合 U=2,1,0,1,2,3,A=1,0,1,B=1,2,则() U AB( ) A. 2,3 B. 2,2,3 C. 2,1,0,3 D. 2,1,0,2,3 2.若 为第四象限角,则( ) A. cos20 B. cos20 D. sin2b0)的右焦点 F与抛物线 C2的焦点重合,C1的中心与 C2的顶点重合.过 F 且与 x 轴垂直的直线交 C1于 A,B 两点,交 C2于 C,D 两点,且|CD|= 4 3 |AB|. (1)求 C1的离心率; (2)设 M是 C1与 C2的公共点,若|MF|=5,求 C1与 C2的标准
3、方程. 20.如图, 已知三棱柱 ABC-A1B1C1的底面是正三角形, 侧面 BB1C1C是矩形, M, N 分别为 BC, B1C1的中点, P为 AM 上一点,过 B1C1和 P 的平面交 AB于 E,交 AC于 F. (1)证明:AA1MN,且平面 A1AMNEB1C1F; (2)设 O为A1B1C1的中心,若 AO平面 EB1C1F,且 AO=AB,求直线 B1E与平面 A1AMN 所成角的正弦 值. 21.已知函数 f(x)=sin2xsin2x. (1)讨论 f(x)在区间(0,)的单调性; (2)证明: 3 3 ( ) 8 f x ; (3)设 nN*,证明:sin2xsin2
4、2xsin24xsin22nx 3 4 n n . (二)选考题:共(二)选考题:共 10分分.请考生在第请考生在第 22、23 题中任选一题作答题中任选一题作答.并用并用 2B 铅笔将所选题号涂黑,铅笔将所选题号涂黑, 多涂、错涂、漏涂均不给分多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分如果多做,则按所做的第一题计分. 选修选修 44:坐标系与参数方程:坐标系与参数方程 22.已知曲线 C1,C2参数方程分别为 C1: 2 2 4cos 4sin x y , ( 为参数) ,C2: 1, 1 xt t yt t (t为参数). (1)将 C1,C2的参数方程化为普通方程; (2)
5、以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设 C1,C2的交点为 P,求圆心在极轴上,且经过 极点和 P 的圆的极坐标方程. 选修选修 45:不等式选讲:不等式选讲 23.已知函数 2 ( )|21|f xxaxa. (1)当2a时,求不等式( ) 4f x 的解集; (2)若( ) 4f x ,求 a 的取值范围. 2020 年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试 理科数学理科数学 注意事项:注意事项: 1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分本试卷满分 150 分分.
6、2.作答时,将答案写在答题卡上作答时,将答案写在答题卡上.写在本试卷上无效写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共一、选择题:本题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分分.在每小题给出的四个选项中,只有一项在每小题给出的四个选项中,只有一项 是符合题目要求的是符合题目要求的. 1.已知集合 U=2,1,0,1,2,3,A=1,0,1,B=1,2,则() U AB( ) A. 2,3 B. 2,2,3 C. 2,1,0,3 D. 2,1,0,2,3 【答案】A 【解析】 【分析】 首先进行并集运
7、算,然后计算补集即可. 【详解】由题意可得:1,0,1,2AB ,则 U 2,3AB . 故选:A. 【点睛】本题主要考查并集、补集的定义与应用,属于基础题. 2.若 为第四象限角,则( ) A. cos20 B. cos20 D. sin2b0)的右焦点 F与抛物线 C2的焦点重合,C1的中心与 C2的顶点重合.过 F 且与 x 轴垂直的直线交 C1于 A,B 两点,交 C2于 C,D 两点,且|CD|= 4 3 |AB|. (1)求 C1的离心率; (2)设 M是 C1与 C2的公共点,若|MF|=5,求 C1与 C2的标准方程. 【答案】 (1) 1 2 ; (2) 22 1: 1 36
8、27 xy C, 2 2: 12Cyx. 【解析】 【分析】 (1)求出AB、CD,利用 4 3 CDAB可得出关于a、c的齐次等式,可解得椭圆 1 C的离心率的值; (2)由(1)可得出 1 C的方程为 22 22 1 43 xy cc ,联立曲线 1 C与 2 C的方程,求出点M的坐标,利用抛物 线的定义结合5MF 可求得c的值,进而可得出 1 C与 2 C的标准方程. 【详解】 (1),0F c,ABx轴且与椭圆 1 C相交于A、B两点, 则直线AB的方程为xc, 联立 22 22 222 1 xc xy ab abc ,解得 2 xc b y a ,则 2 2b AB a , 抛物线
9、2 C的方程为 2 4ycx,联立 2 4 xc ycx , 解得 2 xc yc ,4CDc, 4 3 CDAB,即 2 8 4 3 b c a , 2 23bac, 即 22 2320caca ,即 2 2320ee , 01e Q,解得 1 2 e ,因此,椭圆 1 C的离心率为 1 2 ; (2)由(1)知2ac, 3bc ,椭圆 1 C的方程为 22 22 1 43 xy cc , 联立 2 22 22 4 1 43 ycx xy cc ,消去y并整理得 22 316120xcxc , 解得 2 3 xc或6xc(舍去) , 由抛物线的定义可得 25 5 33 c MFcc,解得3c
10、 . 因此,曲线 1 C的标准方程为 22 1 3627 xy , 曲线 2 C的标准方程为 2 12yx. 【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查 计算能力,属于中等题. 20.如图, 已知三棱柱 ABC-A1B1C1的底面是正三角形, 侧面 BB1C1C是矩形, M, N 分别为 BC, B1C1的中点, P为 AM 上一点,过 B1C1和 P 的平面交 AB于 E,交 AC于 F. (1)证明:AA1MN,且平面 A1AMNEB1C1F; (2)设 O为A1B1C1的中心,若 AO平面 EB1C1F,且 AO=AB,求直线 B1E与平
11、面 A1AMN 所成角的正弦 值. 【答案】 (1)证明见解析; (2) 10 10 . 【解析】 【分析】 (1)由,M N分别为BC, 11 BC的中点, 1 /MN CC,根据条件可得 11 / /AABB,可证 1 MN AA/,要证平面 11 EBC F平面 1 A AMN,只需证明EF 平面 1 A AMN即可; (2)连接NP,先求证四边形ONPA是平行四边形,根据几何关系求得EP,在 11 BC截取 1 BQEP,由 (1)BC平面 1 A AMN,可得QPN为 1 B E与平面 1 A AMN所成角,即可求得答案. 【详解】 (1),M N分别为BC, 11 BC的中点, 1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国卷 全国 2020 普通高校 招生 统一 考试 数学 理科 试卷 答案 解析
文档标签
- 普通高校
- 2020年全国高考数学理科终极冲刺试卷一含答案解析
- 浙江卷2018年普通高校招生全国统一考试数学理科试卷含答案
- 全国卷2020年普通高校招生全国统一考试英语试卷含答案解析
- 山东卷2016年普通高校招生全国统一考试数学理科试卷含答案
- 2020年新课标全国高考数学理科预测卷一含答案
- 天津卷2018年普通高校招生全国统一考试数学理科试卷解析版
- 山东卷2017年普通高校招生全国统一考试数学理科试卷含答案
- 全国卷2018年普通高校招生全国统一考试数学理科试卷解析版
- 四川卷2016年普通高校招生全国统一考试数学理科试卷含答案
- 全国卷2018年普通高校招生全国统一考试数学理科试卷含答案
- 全国卷2017年普通高校招生全国统一考试数学理科试卷原卷解析
链接地址:https://www.77wenku.com/p-147147.html