2020年全国统一高考数学试卷(文科)(新课标Ⅰ卷)含详细解答
《2020年全国统一高考数学试卷(文科)(新课标Ⅰ卷)含详细解答》由会员分享,可在线阅读,更多相关《2020年全国统一高考数学试卷(文科)(新课标Ⅰ卷)含详细解答(23页珍藏版)》请在七七文库上搜索。
1、已知集合 Ax|x23x40,B4,1,3,5,则 AB( ) A4,1 B1,5 C3,5 D1,3 2 (5 分)若 z1+2i+i3,则|z|( ) A0 B1 C D2 3 (5 分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥以该 四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形 底边上的高与底面正方形的边长的比值为( ) A B C D 4 (5 分)设 O 为正方形 ABCD 的中心,在 O,A,B,C,D 中任取 3 点,则取到的 3 点共 线的概率为( ) A B C D 5 (5 分)某校一个课外学习小组为研究某作物种子的发芽
2、率 y 和温度 x(单位:)的关 系,在 20 个不同的温度条件下进行种子发芽实验,由实验数据(xi,yi) (i1,2, 20)得到下面的散点图: 第 2 页(共 23 页) 由此散点图,在 10至 40之间,下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归方程类型的是( ) Aya+bx Bya+bx2 Cya+bex Dya+blnx 6 (5 分)已知圆 x2+y26x0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为 ( ) A1 B2 C3 D4 7 (5 分)设函数 f(x)cos(x+)在,的图象大致如图,则 f(x)的最小正 周期为( ) A B C D
3、8 (5 分)设 alog342,则 4 a( ) A B C D 9 (5 分)执行如图的程序框图,则输出的 n( ) A17 B19 C21 D23 10 (5 分)设an是等比数列,且 a1+a2+a31,a2+a3+a42,则 a6+a7+a8( ) 第 3 页(共 23 页) A12 B24 C30 D32 11 (5 分)设 F1,F2是双曲线 C:x21 的两个焦点,O 为坐标原点,点 P 在 C 上且 |OP|2,则PF1F2的面积为( ) A B3 C D2 12 (5 分)已知 A,B,C 为球 O 的球面上的三个点,O1为ABC 的外接圆若O1的 面积为 4,ABBCAC
4、OO1,则球 O 的表面积为( ) A64 B48 C36 D32 二、填空题:本题共二、填空题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分。分。 13 (5 分)若 x,y 满足约束条件则 zx+7y 的最大值为 14 (5 分)设向量 (1,1) , (m+1,2m4) ,若 ,则 m 15 (5 分)曲线 ylnx+x+1 的一条切线的斜率为 2,则该切线的方程为 16 (5 分)数列an满足 an+2+(1)nan3n1,前 16 项和为 540,则 a1 三、解答题:共三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第分。解答应写出文字说明、证
5、明过程或演算步骤。第 1721 题为必考题为必考 题,每个试题考生都必须作答。第题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题:题为选考题,考生根据要求作答。 (一)必考题: 共共 60 分。分。 17 (12 分)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为 A,B,C, D 四个等级加工业务约定:对于 A 级品、B 级品、C 级品,厂家每件分别收取加工费 90 元,50 元,20 元;对于 D 级品,厂家每件要赔偿原料损失费 50 元该厂有甲、乙两 个分厂可承接加工业务 甲分厂加工成本费为 25 元/件, 乙分厂加工成本费为 20
6、元/件 厂 家为决定由哪个分厂承接加工业务,在两个分厂各试加工了 100 件这种产品,并统计了 这些产品的等级,整理如下: 甲分厂产品等级的频数分布表 等级 A B C D 频数 40 20 20 20 乙分厂产品等级的频数分布表 等级 A B C D 第 4 页(共 23 页) 频数 28 17 34 21 (1)分别估计甲、乙两分厂加工出来的一件产品为 A 级品的概率; (2)分别求甲、乙两分厂加工出来的 100 件产品的平均利润,以平均利润为依据,厂家 应选哪个分厂承接加工业务? 18 (12 分)ABC 的内角 A,B,C 的对边分别为 a,b,c已知 B150 (1)若 ac,b2,
7、求ABC 的面积; (2)若 sinA+sinC,求 C 19 (12 分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形, P 为 DO 上一点,APC90 (1)证明:平面 PAB平面 PAC; (2)设 DO,圆锥的侧面积为,求三棱锥 PABC 的体积 20 (12 分)已知函数 f(x)exa(x+2) (1)当 a1 时,讨论 f(x)的单调性; (2)若 f(x)有两个零点,求 a 的取值范围 21 (12 分)已知 A,B 分别为椭圆 E:+y21(a1)的左、右顶点,G 为 E 的上顶点, 8 P 为直线 x6 上的动点, PA 与 E 的另一交点为
8、 C, PB 与 E 的另一交点为 D (1)求 E 的方程; (2)证明:直线 CD 过定点 (二)选考题:共(二)选考题:共 10 分。请考生在第分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的题中任选一题作答。如果多做,则按所做的 第一题计分。第一题计分。选修选修 4-4:坐标系与参数方程:坐标系与参数方程(10 分)分) 22 (10 分)在直角坐标系 xOy 中,曲线 C1的参数方程为(t 为参数) 以坐 第 5 页(共 23 页) 标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C2的极坐标方程为 4cos 16sin+30 (1)当 k1 时,C1是什么曲线
9、? (2)当 k4 时,求 C1与 C2的公共点的直角坐标 选修选修 4-5:不等式选讲:不等式选讲(10 分)分) 23已知函数 f(x)|3x+1|2|x1| (1)画出 yf(x)的图象; (2)求不等式 f(x)f(x+1)的解集 第 6 页(共 23 页) 2020 年全国统一高考数学试卷(文科) (新课标)年全国统一高考数学试卷(文科) (新课标) 参考答案与试题解析参考答案与试题解析 一、选择题:本题共一、选择题:本题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分。在每小题给出的四个选项中,只有分。在每小题给出的四个选项中,只有 一项是符合题目要求的。一项是符合题
10、目要求的。 1 (5 分)已知集合 Ax|x23x40,B4,1,3,5,则 AB( ) A4,1 B1,5 C3,5 D1,3 【分析】求解一元二次不等式化简 A,再由交集运算得答案 【解答】解:集合 Ax|x23x40(1,4) ,B4,1,3,5, 则 AB1,3, 故选:D 【点评】本题考查交集及其运算,考查一元二次不等式的解法,是基础题 2 (5 分)若 z1+2i+i3,则|z|( ) A0 B1 C D2 【分析】根据复数的定义化简原式,并通过模长公式求解即可 【解答】解:z1+2i+i31+2ii1+i, |z| 故选:C 【点评】本题考查了复数的定义以及复数模的求法,是基础题
11、 3 (5 分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥以该 四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形 底边上的高与底面正方形的边长的比值为( ) A B C D 第 7 页(共 23 页) 【分析】先根据正四棱锥的几何性质列出等量关系,进而求解结论 【解答】解:设正四棱锥的高为 h,底面边长为 a,侧面三角形底边上的高为 h, 则依题意有:, 因此有 h2()2ah4()22()10(负值舍 去) ; 故选:C 【点评】本题主要考查棱锥的几何性质,属于中档题 4 (5 分)设 O 为正方形 ABCD 的中心,在 O,A,B,C,D
12、中任取 3 点,则取到的 3 点共 线的概率为( ) A B C D 【分析】根据古典概率公式即可求出 【解答】解:O,A,B,C,D 中任取 3 点,共有10, 其中共线为 A,O,C 和 B,O,D 两种, 故取到的 3 点共线的概率为 P, 故选:A 【点评】本题考查了古典概型概率问题,属于基础题 5 (5 分)某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x(单位:)的关 系,在 20 个不同的温度条件下进行种子发芽实验,由实验数据(xi,yi) (i1,2, 20)得到下面的散点图: 由此散点图,在 10至 40之间,下面四个回归方程类型中最适宜作为发芽率 y 和温度 x
13、 的回归方程类型的是( ) 第 8 页(共 23 页) Aya+bx Bya+bx2 Cya+bex Dya+blnx 【分析】直接由散点图结合给出的选项得答案 【解答】解:由散点图可知,在 10至 40之间,发芽率 y 和温度 x 所对应的点(x,y) 在一段对数函数的曲线附近, 结合选项可知,ya+blnx 可作为发芽率 y 和温度 x 的回归方程类型 故选:D 【点评】本题考查回归方程,考查学生的读图视图能力,是基础题 6 (5 分)已知圆 x2+y26x0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为 ( ) A1 B2 C3 D4 【分析】由相交弦长|AB|和圆的半径 r 及
14、圆心 C 到过 D(1,2)的直线的距离 d 之间的勾 股关系,求出弦长的最小值,即圆心到直线的距离的最大时,而当直线与 CD 垂直时 d 最大,求出 d 的最大值,进而求出弦长的最小值 【解答】解:由圆的方程可得圆心坐标 C(3,0) ,半径 r3; 设圆心到直线的距离为 d,则过 D(1,2)的直线与圆的相交弦长|AB|2, 当 d 最大时|AB|最小,当直线与 CD 所在的直线垂直时 d 最大,这时 d|CD| 2, 所以最小的弦长|AB|22, 故选:B 【点评】本题考查直线与圆相交的相交弦长公式,及圆心到直线的距离的最大时的求法, 属于中档题 7 (5 分)设函数 f(x)cos(x
15、+)在,的图象大致如图,则 f(x)的最小正 周期为( ) 第 9 页(共 23 页) A B C D 【分析】 由图象观察可得最小正周期小于, 大于, 排除 A, D; 再由 f () 0,求得 ,对照选项 B,C,代入计算,即可得到结论 【解答】解:由图象可得最小正周期小于 (),大于 2() ,排除 A,D; 由图象可得 f()cos(+)0, 即为+k+,kZ, (*) 若选 B,即有 ,由+k+,可得 k 不为整数,排除 B; 若选 C,即有 ,由+k+,可得 k1,成立 故选:C 【点评】本题考查三角函数的图象和性质,主要是函数的周期的求法,运用排除法是迅 速解题的关键,属于中档题
16、 8 (5 分)设 alog342,则 4 a( ) A B C D 【分析】直接根据对数和指数的运算性质即可求出 【解答】解:因为 alog342,则 log34a2,则 4a329 则 4 a , 故选:B 【点评】本题考查了对数和指数的运算性质,属于基础题 9 (5 分)执行如图的程序框图,则输出的 n( ) 第 10 页(共 23 页) A17 B19 C21 D23 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量 n 的 值,分析循环中各变量值的变化情况,可得答案 【解答】解:n1,S0, 第一次执行循环体后,S1,不满足退出循环的条件,n3; 第二次执行循
17、环体后,S4,不满足退出循环的条件,n5; 第三次执行循环体后,S9,不满足退出循环的条件,n7; 第四次执行循环体后,S16,不满足退出循环的条件,n9; 第五次执行循环体后,S25,不满足退出循环的条件,n11; 第六次执行循环体后,S36,不满足退出循环的条件,n13; 第七次执行循环体后,S49,不满足退出循环的条件,n15; 第八次执行循环体后,S64,不满足退出循环的条件,n17; 第九次执行循环体后,S81,不满足退出循环的条件,n19; 第十次执行循环体后,S100,不满足退出循环的条件,n21; 第十一次执行循环体后,S121,满足退出循环的条件, 故输出 n 值为 21,
18、故选:C 【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得 出正确的结论,是基础题 10 (5 分)设an是等比数列,且 a1+a2+a31,a2+a3+a42,则 a6+a7+a8( ) 第 11 页(共 23 页) A12 B24 C30 D32 【分析】根据等比数列的性质即可求出 【解答】解:an是等比数列,且 a1+a2+a31, 则 a2+a3+a4q(a1+a2+a3) ,即 q2, a6+a7+a8q5(a1+a2+a3)25132, 故选:D 【点评】本题考查了等比数列的性质和通项公式,属于基础题 11 (5 分)设 F1,F2是双曲线 C:x21
19、的两个焦点,O 为坐标原点,点 P 在 C 上且 |OP|2,则PF1F2的面积为( ) A B3 C D2 【分析】先判断PF1F2为直角三角形,再根据双曲线的定义和直角三角形的性质即可 求出 【解答】解:由题意可得 a1,b,c2, |F1F2|2c4, |OP|2, |OP|F1F2|, PF1F2为直角三角形, PF1PF2, |PF1|2+|PF2|24c216, |PF1|PF2|2a2, |PF1|2+|PF2|22|PF1|PF2|4, |PF1|PF2|6, PF1F2的面积为 S|PF1|PF2|3, 故选:B 【点评】本题考查了双曲线的性质,直角三角形的性质,双曲线的定义
20、,三角形的面积, 属于中档题 12 (5 分)已知 A,B,C 为球 O 的球面上的三个点,O1为ABC 的外接圆若O1的 面积为 4,ABBCACOO1,则球 O 的表面积为( ) 第 12 页(共 23 页) A64 B48 C36 D32 【分析】画出图形,利用已知条件求出 OO1,然后求解球的半径,即可求解球的表面积 【解答】解:由题意可知图形如图:O1的面积为 4,可得 O1A2,则 AO1ABsin60, ABBCACOO12, 外接球的半径为:R4, 球 O 的表面积:44264 故选:A 【点评】本题考查球的内接体问题,球的表面积的求法,求解球的半径是解题的关键 二、填空题:本
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 全国 统一 高考 数学试卷 文科 新课
文档标签
- 数学试卷
- 2018年陕西高考数学试卷
- 20201年贵阳高考一摸数学试卷
- 2019年全国统一高考数学试卷文科新课标
- 2019年全国统一高考数学试卷文科
- 2020年全国统一高考数学试卷
- 2020年全国统一高考数学试卷文科新课标2卷
- 20202021学年新课标闯关卷14勾股定理
- 20202021学年新课标闯关卷十七
- 新课讲义
- 2020年全国统一高考语文试卷新课标卷含详细解答
- 2020年全国统一高考英语试卷新课标卷含详细解答
- 2020年全国统一高考数学试卷理科新课标卷含详细解答
- 2020年全国统一高考语文试卷新课标II卷含详细解答
- 2020年全国统一高考数学试卷理科新课标I含详细解答
- 2020年全国统一高考数学试卷文科新课标卷含详细解答
- 全国统一高考物理试卷全国卷
链接地址:https://www.77wenku.com/p-147174.html