专题02 二次函数与营销问题-2019年中考数学复习压轴题突破之二次函数(原卷版)
《专题02 二次函数与营销问题-2019年中考数学复习压轴题突破之二次函数(原卷版)》由会员分享,可在线阅读,更多相关《专题02 二次函数与营销问题-2019年中考数学复习压轴题突破之二次函数(原卷版)(14页珍藏版)》请在七七文库上搜索。
1、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 02 二次函数与营销问题二次函数与营销问题 【方法综述】【方法综述】来源来源:学学.科科.网网 Z.X.X.K 此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量 取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根 据题意找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到据题意
2、找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到 函数的最值或在一定自变量范围内函数值的最值;再次通常考察利润在一定范围内时对应的函数的最值或在一定自变量范围内函数值的最值;再次通常考察利润在一定范围内时对应的 自变量取值范围,解答自变量取值范围,解答方法通常采用通过数形结合思想,画出函数图象根据题意找到答案。方法通常采用通过数形结合思想,画出函数图象根据题意找到答案。 【典例示范】【典例示范】 类型一常规盈利问题类型一常规盈利问题 例例 1:(2019 湖北宜昌)某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过 程下面的二次函数图象(部分)刻
3、画了该公司年初以来累积利润 (万元)与销售时间 (月)之间的关系 (即前 个月的利润总和 和 之间的关系) 根据图象提供的信息,解答下列问题: 由已知图象上的三点坐标,求累积利润 (万元)与时间 (月)之间的函数关系式; 求截止到几月末公司累积利润可达到万元; 求第 个月公司所获利润是多少万元? 针对训练针对训练 1(2018 宁波)根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润 y1(千元)与进货量 x (吨) 近似满足函数关系 y1=0.25x, 乙种水果的销售利润 y2(千元) 与进货量 x (吨) 之间的函数 y2=ax2+bx+c 的图象如图所示 (1)求出 y2与
4、x 之间的函数关系式; (2)如果该市场准备进甲、乙两种水果共 8 吨,设乙水果的进货量为 t 吨,写出这两种水果所获得的销售 利润之和 W(千元)与 t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最 大,最大利润是多少? 2 (2019 泰州姜堰区期末)某水果店销售某品牌苹果,该苹果每箱的进价是 40 元,若每箱售价 60 元,每 星期可卖 180 箱为了促销,该水果店决定降价销售市场调查反映:若售价每降价 1 元,每星期可多卖 10 箱设该苹果每箱售价 x 元(40x60) ,每星期的销售量为 y 箱 (1)求 y 与 x 之间的函数关系式; (2)当每箱售价为多
5、少元时,每星期的销售利润达到 3570 元? (3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元? 3 (2019 安徽阜阳期末)某企业生产了一款健身器材,可通过实体店和网上商店两种途径进行销售,销售 了一段时间后,该企业对这种健身器材的销售情况进行了为期 30 天的跟踪调查,其中实体店的日销售量 y1(套)与时间 x(x 为整数,单位:天)的部分对应值如下表所示: 时间 x(天) 0 5 10 15 20 25 30 日销售量 y(套) 0 25 40 45 40 25 0 (1)求出 y1与 x 的二次函数关系式及自变量 x 的取值范围 (2) 若 网 上 商 店 的 日 销
6、 售 量y2( 套 ) 与 时 间x(x为 整 数 , 单 位 : 天 ) 的 函 数 关 系 为 ,则在跟踪调查的 30 天中,设实体店和网上商店的日销售总量为 y(套), 求 y 与 x 的函数关系式;当 x 为何值时,日销售总量 y 达到最大,并写出此时的最大值. 4 (2018 广东中山)某电商在购物平台上销售一款小电器,其进价为 45 元/件,每销售一件需缴纳平台推 广费 5 元,该款小电器每天的销售量 y(件)与每件的销售价格 x(元)满足函数关系:y2x+200为 保证市场稳定,供货商规定销售价格不得低于 75 元/件 (1)写出每天的销售利润 w(元)与销售价格 x(元)的函数
7、关系式(不必写出 x 的取值范围) ; (2)每件小电器的销售价格定为多少元时,才能使该款小电器每天获得的利润是 1200 元? 5 (2019 洛阳市月考)某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物 售出后再进行结算,未售出的由厂家负责处理) 当每吨售价为 260 元时,月销售量为 45 吨该经销店为 提高经营利润,准备采取降价的方式进行促销经市场调查发现:当每吨售价每下降 10 元时,月销售量就 会增加 7.5 吨综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用 100 元设每吨材料售价 为 x(元) ,该经销店的月利润为 y(元) 当每吨售价是 2
8、40 元时,计算此时的月销售量; (1)求出 y 与 x 的函数关系式(不要求写出 x 的取值范围) ; (2)该经销店要获得最大月利润,售价应定为每吨多少元?来源:学。科。网 Z。X。X。K 6 (2018 重庆月考)某文具店购进 A,B 两种钢笔,若购进 A 种钢笔 2 支,B 种钢笔 3 支,共需 90 元;购 进 A 种钢笔 3 支,B 种钢笔 5 支,共需 145 元 (1)求该文具店购进 A、B 两种钢笔每支各多少元? (2)经统计,B 种钢笔售价为 30 元时,每月可卖 64 支;每涨价 3 元,每月将少卖 12 支,求该文具店 B 种钢笔销售单价定为多少元时,每月获利最大?最大
9、利润是多少元? 7 (青岛市李沧区期末)某公司营销 A,B 两种产品,根据市场调研,确定两条信息: 信息 1:销售 A 种产品所获利润 y(万元)与所售产品 x(吨)之间存在二次函数关系,如图所示: 信息 2:销售 B 种产品所获利润 y(万元)与销售产品 x(吨)之间存在正比例函数关系 y0.3x 根据以上信息,解答下列问题; (1)求二次函数的表达式; (2)该公司准备购进 A、B 两种产品共 10 吨,请设计一个营销方案,使销售 A 、 B 两种产品获得的利润 之和最大,最大利润是多少万元? 类型二一次函数与二次函数相结合的营销问题类型二一次函数与二次函数相结合的营销问题 例 2 (20
10、19 江苏东台)某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐 给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量 y(个)与销售单价 x(元/个)之间的对应关系 如图所示: (1)试判断 y 与 x 之间的函数关系,并求出函数关系式; (2)若许愿瓶的进价为 6 元/个,按照上述市场调查的销售规律,求销售利润 w(元)与销售单价 x(元/ 个)之间的函数关系式;来源:学*科*网 (3)在(2)的条件下,若许愿瓶的进货成本不超过 900 元,要想获得最大的利润,试确定这种许愿瓶的 销售单价,并求出此时的最大利润. 针对针对训练训练 1. 国家推行“节能减排,低碳经
11、济”政策后,某环保节能设备生产企业的产品供不应求若该企业的某种环 保设备每月的产量保持在一定的范围,每套产品的生产成本不高于 50 万元,每套产品的售价不低于 80 万 元,已知这种设备的月产量 x(套)与每套的售价 y(万元)之间满足关系式 y1502x,月产量 x(套) 与生产总成本 y2(万元)存在如图所示的函数关系 (1)直接写出 y2与 x 之间的函数关系式; (2)求月产量 x 的范围; (3)当月产量 x(套)为多少时,这种设备的利润 W(万元)最大?最大利润是多少? 2 (2019 天津南开期末)某商家独家销售具有地方特色的某种商品,每件进价为 40 元。经注市场调查,一周 的
12、销售量 件与销售单价元/件的关系如下表: 销售单价 (元/件) 55 60 70 75 一周的销售量 (件) 450 400 300 250 (1)直接写出 与 的函数关系式; (2)设一周的销售利润为 元,请求出 与 的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利 润随着销售单价的增大而增大? (3)商家决定将商品一周的销售利润全部做公益捐岀,在商家购进该商品的货款不超过10000元情况下,请你求 出该商家最大捐款数额是多少元? 3 (2019 张家港期末)小丽老师家有一片 80 棵桃树的桃园,现准备多种一些桃树提高桃园产量,但是如果 多种树, 那么树之间的距离和每棵树所受光
13、照就会减少, 单棵树的产量随之降低.若该桃园每棵桃树产桃 (千 克)与增种桃树 (棵)之间的函数关系如图所示. (1)求 与 之间的函数关系式; (2)在投入成本最低的情况下,增种桃树多少棵时,桃园的总产量可以达到 6750 千克? (3)如果增种的桃树 (棵)满足: ,请你帮小丽老师家计算一下,桃园的总产量最少是多少千克, 最多又是多少千克? 4 (2019 湖北省鄂州)某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售, 每袋成本 3 元试销期间发现每天的销售量 y(袋)与销售单价 x(元)之间满足一次函数关系,部分数据 如表所示,其中 3.5x5.5,另外每天还需支付
14、其他各项费用 80 元 销售单价 x(元) 3.5 5.5 销售量 y(袋) 280 120 (1)请直接写出 y 与 x 之间的函数关系式; (2)如果每天获得 160 元的利润,销售单价为多少元?来源:学科网 (3)设每天的利润为 w 元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元? 5 (2019 合肥市庐阳区)某公司 2017 年初刚成立时投资 1000 万元购买新生产线生产新产品,此外,生产 每件该产品还需要成本 40 元.按规定,该产品售价不得低于 60 元/件且不超过 160 元/件,且每年售价确定以 后不再变化,该产品的年销售量 (万件)与产品售价 (元)之间的函
15、数关系如图所示 (1)求 与 之间的函数关系式,并写出 的取值范围; (2)求 2017 年该公司的最大利润? (3)在 2017 年取得最大利润的前提下,2018 年公司将重新确定产品售价,能否使两年共盈利达 980 万元. 若能,求出 2018 年产品的售价;若不能,请说明理由 6. (2019 郑州期末)丹尼斯超市进了一批成本为 8 元/个的文具盒. 调查发现:这种文具盒每个星期的销 售量 y(个)与它的定价 x(元/个)的关系如图所示: (1)求这种文具盒每个星期的销售量 y(个)与它的定价 x(元/个)之间的函数关系式(不必写出自变量 x 的取值 范围); (2)每个文具盒的定价是多
16、少元,超市每星期销售这种文具盒 (不考虑其他因素)可或得的利润为 1200 元? (3)若该超市每星期销售这种文具盒的销售量小于 115 个, 且单件利润不低于 4 元(x 为整数),当每个文 具盒定价多少 元时,超市每星期利润最高?最高利润是多少? 7 (2018 重庆巴南区期末)我区某童装专卖店在销售中发现,一款童装每件进价为 40 元,若销售价为 70 元,每天可售出 20 件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发 现,如果每件童装降价 1 元,那么平均每天可多售出 2 件设每件童装降价 x 元(x0)时,平均每天可 盈利 y 元 (1)写出 y 与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题02 二次函数与营销问题-2019年中考数学复习压轴题突破之二次函数原卷版 专题 02 二次 函数 营销 问题 2019 年中 数学 复习 压轴 突破 原卷版
链接地址:https://www.77wenku.com/p-147466.html