专题07 二次函数背景下的三角形相似(全等)-2019年中考数学复习压轴题突破之二次函数(解析版)
《专题07 二次函数背景下的三角形相似(全等)-2019年中考数学复习压轴题突破之二次函数(解析版)》由会员分享,可在线阅读,更多相关《专题07 二次函数背景下的三角形相似(全等)-2019年中考数学复习压轴题突破之二次函数(解析版)(44页珍藏版)》请在七七文库上搜索。
1、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 07 二次函数背景下的三角形相似(全等)二次函数背景下的三角形相似(全等) 【方法综述】【方法综述】 三角形全等是三角形相似的特殊情况。三角形的全等和相似是综合题中的常见要素,解答时注意应用三角形全等是三角形相似的特殊情况。三角形的全等和相似是综合题中的常见要素,解答时注意应用 全等三角形和相似的判定方法。另外,注意题目中全等三角形和相似的判定方法。另外,注意题目中“”与全等表述、与全等表述、“”和相似表述的区别。全等和和相似表述的区别。全等和 相似的符号,标志着三角形全等(相似)的对应点的一、一对应关系。解
2、答时,对于确定的对应边角可以相似的符号,标志着三角形全等(相似)的对应点的一、一对应关系。解答时,对于确定的对应边角可以 直接利用于解题。而全等、相似的语言表述,标志着对应点之间的组合关系,解答时,要进直接利用于解题。而全等、相似的语言表述,标志着对应点之间的组合关系,解答时,要进行对应边的分行对应边的分 类讨论。类讨论。 【典例示范】【典例示范】 类型一类型一 确定的全等三角形条件的判定应用确定的全等三角形条件的判定应用 例例 1 1: (陕西省渭南市大荔县中考数学三模试题)如图,已知抛物线与 x 轴交于 A、B 两 点,其中点 A 的坐标为,抛物线的顶点为 P 求 b 的值,并求出点 P、
3、B 的坐标; 在 x 轴下方的抛物线上是否存在点 M,使?如果存在,请直接写出点 M 的坐标;如果不 存在,试说明理由 【答案】存在, 【解析】抛物线经过, ,解得:, 抛物线的表达式为 , 点 P 的坐标为 令得:,解得或, 的坐标为 存在,点 如图:过点 P 作轴,垂足为 C,连接 AP、BP,作的平分线,交 PB 与点 N,交抛物线与点 M,连 接 PM、BM , , 是等边三角形, , , 在和中, 存在这样的点 M,使得 ,点 N 是 PB 的中点, 设直线 AM 的解析式为,将点 A 和点 N 的坐标代入得:,解得:, 直线 AM 的解析式为 将代入抛物线的解析式得:,解得:或舍去
4、 , 当时, 点 M 的坐标为 针对训练针对训练 1 (2018 年九年级数学北师大版下册:第二章检测卷)如图,在平面直角坐标系中,已知抛物线yax 2 bx8 与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物 线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(2,0),(6,8) (1)求抛物线的解析式,并分别求出点B和点E的坐标; (2)试探究抛物线上是否存在点F,使FOEFCE.若存在,请直接写出点F的坐标;若不存在,请说明理 由 【答案】(1) y 1 2 x 23x8; (2)点 F的坐标为(317,4)或(317,4) 【解析】 (1
5、)抛物线 y=ax 2+bx-8 经过点 A(-2,0) ,D(6,-8) , 428 0 36688 ab ab 解得 1 2 3 a b 抛物线的函数表达式为y 1 2 x 2 3 x8; y 1 2 x 2 3 x8 1 2 (x3) 225 2 , 抛物线的对称轴为直线 x=3 又抛物线与 x 轴交于 A,B 两点,点 A 的坐标为(-2,0) 点 B 的坐标为(8,0) , 设直线 L 的函数表达式为 y=kx 点 D(6,-8)在直线 L 上, 6k=-8,解得 k=- 4 3 , 直线 L 的函数表达式为 y=- 4 3 x, 点 E 为直线 L 和抛物线对称轴的交点, 点 E
6、的横坐标为 3,纵坐标为- 4 3 3=-4, 点 E 的坐标为(3,-4) ; (2)抛物线上存在点 F,使FOEFCE OE=CE=5, FO=FC, 点 F 在 OC 的垂直平分线上,此时点 F 的纵坐标为-4, 1 2 x 2-3x-8=-4,解得 x=3 17 , 点 F 的坐标为(3-17,-4)或(3+17,-4) 2 (河南省濮阳市 2018 届九年级中考数学二模试题)如图,一次函数与坐标轴分别交于A,B 两点,抛物线经过点A,B,点P从点B出发,以每秒 2 个单位长度的速度沿射线BA运动, 点Q从点A出发,以每秒 1 个单位长度的速度沿射线AO运动,两点同时出发,运动时间为t
7、秒 求此抛物线的表达式; 求当为等腰三角形时,所有满足条件的t的值; 点P在线段AB上运动,请直接写出t为何值时,的面积达到最大?此时,在抛物线上是否存在一 点T,使得?若存在,请直接写出点T的坐标;若不存在,请说明理由 【答案】(1); (2)当为等腰三角形时,t的值为、 或或 4; (3) 点T的坐标为 【解析】把代入中,得 把代入中,得 , 把,分别代入中,得, 抛物线的表达式为 ,由勾股定理,得, 运动t秒后, 为等腰三角形,有,三种情况, 当时,过点Q作于点D 在中, , 解得; 当时, 若点P在x轴上方的直线AB上, , 解得; 若点P在x轴下方的直线AB上, , , 解得:; 当
8、时,过点P作于点E 则,在中, , 解得: 综上所述,当为等腰三角形时,t的值为、 或或 4 过点P作于点F,延长FP交抛物线与点T 为底边AQ上的高 , 当时,的面积最大 此时点P为AB的中点,且 连接OP,则, 点, 点T的横坐标为, 将代入抛物线的解析式得: 在中,由勾股定理可知:, 点T的坐标为 类型二类型二 全等三角形的存在性探究全等三角形的存在性探究 例 2 (四川省眉山市洪雅县 2018 届九年级中考适应性考)如图,抛物线 y=ax 2+bx+c 与 x 轴的交点分别为 A (6,0)和点 B(4,0) ,与 y 轴的交点为 C(0,3) (1)求抛物线的解析式; (2)点 P
9、是线段 OA 上一动点(不与点 A 重合) ,过 P 作平行于 y 轴的直线与 AC 交于点 Q,点 D、M 在线段 AB 上,点 N 在线段 AC 上 是否同时存在点 D 和点 P,使得APQ 和CDO 全等,若存在,求点 D 的坐标,若不存在,请说明理由; 若DCB=CDB,CD 是 MN 的垂直平分线,求点 M 的坐标 【答案】 (1)y= x 2 x+3; (2)点 D 坐标为( ,0) ;点 M( ,0). 【解析】 (1)将点(-6,0) ,C(0,3) ,B(4,0)代入 y=ax 2+bx+c,得 , 解得: , 抛物线解析式为:y=- x 2- x+3; (2)存在点 D,使
10、得APQ 和CDO 全等, 当 D 在线段 OA 上,QAP=DCO,AP=OC=3 时,APQ 和CDO 全等, tanQAP=tanDCO, , , OD= , 点 D 坐标为(- ,0). 由对称性,当点 D 坐标为( ,0)时, 由点 B 坐标为(4,0) , 此时点 D( ,0)在线段 OB 上满足条件 OC=3,OB=4, BC=5, DCB=CDB, BD=BC=5, OD=BD-OB=1, 则点 D 坐标为(-1,0)且 AD=BD=5, 连 DN,CM, 则 DN=DM,NDC=MDC, NDC=DCB, DNBC, , 则点 N 为 AC 中点 DN 时ABC 的中位线,
11、DN=DM= BC= , OM=DM-OD= 点 M( ,0) 针对训练针对训练 1如图,在平面直角坐标系中,以点M(2,0)为圆心的M与y轴相切于原点O,过点B(2,0)作 M的切线,切点为C,抛物线经过点B和点M (1)求这条抛物线解析式; (2)求点C的坐标,并判断点C是否在(1)中抛物线上; (3) 动点P从原点O出发, 沿y轴负半轴以每秒 1 个单位长的速度向下运动, 当运动t秒时到达点Q处 此 时BOQ与MCB全等,求t的值 【答案】 (1)yx 2+ ; (2)点 C 在(1)的抛物线上; (3)t2 【解析】 (1)将点M(2,0) 、B(2,0)代入 yx 2+bx+c 中,
12、得: 解得: 抛物线的解析式:yx 2 (2)连接MC,则MCBC;过点C作CDx轴于D,如图,在 RtBCM中,CDBM,CM2,BM4,则: DM1,CD,ODOMDM1,C(1,) 当x1 时,yx 2 ,所以点C在(1)的抛物线上 (3)BCM和BOQ中,OBCM2,BOQBCM90,若两三角形全等,则: OQBC,当t2时,MCB和BOQ全等 2 (广西田阳县实验中学 2019 届九年级中考一)如图所示,抛物线(m0)的顶点为 A, 直线与 轴的交点为点 B. (1)求出抛物线的对称轴及顶点 A 的坐标(用含 的代数式表示) ; (2)证明点 A 在直线 上,并求OAB 的度数; (
13、3)动点 Q 在抛物线对称轴上,问:抛物线上是否存在点 P,使以点 P、Q、A 为顶点的三角形与OAB 全 等?若存在,求出 的值,并写出所有符合上述条件的点 P 的坐标;若不存在,请说明理由. 【答案】 (1)抛物线的对称轴为直线,顶点 A 的坐标为(,0) ; (2)OAB=30; (3)存在, = 时, P (0,- ) ,P (,- ) ;=时,P (,-3) ,P (3+,-3) ;=2 时, P (, -3) ,P (,-3) ;= 时, P (,- ) ,P (,- ). 【解析】 (1)对称轴:x=m; 顶点:A(m,0) (2)将 x=m 代入函数 y=x-m, 得 y=m-
14、m=0 点 A(m,0)在直线 l 上 当 x=0 时,y=-m, B(0,-m) tanOAB=, OAB=30 度 (3)以点 P、Q、A 为顶点的三角形与OAB 全等共有以下四种情况: 当AQP=90,PQ=m,AQ=m 时, 如图 1,此时点 P 在 y 轴上,与点 B 重合,其坐标为(0,-m) , 代入抛物线 y=-(x-m) 2 得-m=-3m 2, m0, m= 这时有 P1(0,- ) 其关于对称轴的对称点 P2(,- )也满足条件 当AQP=90,PQ=m,AQ=m时 点 P 坐标为(m-m,-m) , 代入抛物线 y=-(x-m) 2 得m=m 2, m0, m= 这时有
15、 P3(3-,-3) 还有关于对称轴的对称点 P4(3+,-3) 当APQ=90,AP=m,PQ=m 时 点 P 坐标为(m,m) ,代入抛物线 y=-(x-m) 2 得 m= m 2, m0, m=2 这时有 P5(,-3) 还有关于对称轴的对称点 P6(3,-3) 当APQ=90,AP=m,PQ=m时 点 P 坐标为(m,m) , 代入抛物线 y=-(x-m) 2 得 m= m 2, m0, m= 这时有 P7(,- ) 还有关于对称轴对称的点 P8(,- ) 所以当 m= 时,有点 P1(0,- ) ,P2(,- ) ; 当 m=时,有点 P3(3-,-3) ,P4(3+,-3) ; 当
16、 m=2 时,有点 P5(,-3) ,P6(3,-3) ; 当 m= 时,有点 P7(,- ) ,P8(,- ) 3如图 1,抛物线 y1=ax 2 x+c 与 x 轴交于点 A 和点 B(1,0) ,与 y 轴交于点 C(0, ) ,抛物线 y 1的顶 点为 G,GMx 轴于点 M将抛物线 y1平移后得到顶点为 B 且对称轴为直线 l 的抛物线 y2 (1)求抛物线 y2的解析式; (2)如图 2,在直线 l 上是否存在点 T,使TAC 是等腰三角形?若存在,请求出所有点 T 的坐标;若不存 在,请说明理由; (3)点 P 为抛物线 y1上一动点,过点 P 作 y 轴的平行线交抛物线 y2于
17、点 Q,点 Q 关于直线 l 的对称点为 R, 若以 P,Q,R 为顶点的三角形与AMG 全等,求直线 PR 的解析式 【答案】 (1)y2=- x 2+ x- ; (2)存在; (3)y= x+ 或 y= . 【解析】 (1)由已知,c= , 将 B(1,0)代入,得:a=0, 解得 a= , 抛物线解析式为 y1= x 2- x+ , 抛物线 y1平移后得到 y2,且顶点为 B(1,0) , y2= (x1) 2, 即 y2=- x 2+ x- ; (2)存在, 如图 1: 抛物线 y2的对称轴 l 为 x=1,设 T(1,t) , 已知 A(3,0) ,C(0, ) , 过点 T 作 T
18、Ey 轴于 E,则 TC 2=TE2+CE2=12+( )2=t2 t+ , TA 2=TB2+AB2=(1+3)2+t2=t2+16, AC 2= , 当 TC=AC 时,t 2 t+ =, 解得:t1=,t2=; 当 TA=AC 时,t 2+16= ,无解; 当 TA=TC 时,t 2 t+ =t 2+16, 解得 t3=; 当点 T 坐标分别为(1,) , (1,) , (1,)时,TAC 为等腰三角形; (3)如图 2: 设 P(m,) ,则 Q(m,) , Q、R 关于 x=1 对称 R(2m,) , 当点 P 在直线 l 左侧时, PQ=1m,QR=22m, PQR 与AMG 全等
19、, 当 PQ=GM 且 QR=AM 时,m=0, P(0, ) ,即点 P、C 重合, R(2, ) , 由此求直线 PR 解析式为 y= x+ , 当 PQ=AM 且 QR=GM 时,无解; 当点 P 在直线 l 右侧时, 同理:PQ=m1,QR=2m2, 则 P(2, ) ,R(0, ) , PQ 解析式为:y=; PR 解析式为:y= x+ 或 y=. 类型三类型三 确定的相似三角形条件的判定应用确定的相似三角形条件的判定应用 例 3: (重庆市九龙坡区西彭三中 2019 届九年级(上)期末)如图,已知抛物线经过点 A(1,0) ,B(4, 0) ,C(0,2)三点,点 D 与点 C 关
20、于 x 轴对称,点 P 是 x 轴上的一个动点,设点 P 的坐标为(m,0) ,过 点 P 作 x 轴的垂线交抛物线于点 Q,交直线 BD 于点 M (1)求该抛物线所表示的二次函数的表达式; (2)点 P 在线段 AB 上运动的过程中,是否存在点 Q,使得BODQBM?若存在,求出点 Q 的坐标;若不 存在,请说明理由 (3)已知点 F(0, ) ,点 P 在 x 轴上运动,试求当 m 为何值时以 D、M、Q、F 为顶点的四边形是平行四边 形 【答案】 (1)y x 2+ x+2; (2)存在,点 Q 的坐标为(3,2) ; (3)m1 或 m3 或 m1+ 或 1 时,四边形 DMQF 是
21、平行四边形 【解析】 (1)由抛物线过点 A(1,0) 、B(4,0)可设解析式为 ya(x+1) (x4) , 将点 C(0,2)代入,得:4a2, 解得:a , 则抛物线解析式为 y (x+1) (x4) x 2+ x+2; (2)如图所示: 当BODQBM 时, 则, MBQ90, MBP+PBQ90, MPBBPQ90, MBP+BMP90, BMPPBQ, MBQBPQ, , , 解得:m13、m24, 当 m4 时,点 P、Q、M 均与点 B 重合,不能构成三角形,舍去, m3,点 Q 的坐标为(3,2) ; (3)由题意知点 D 坐标为(0,2) , 设直线 BD 解析式为 yk
22、x+b, 将 B(4,0) 、D(0,2)代入,得:, 解得:, 直线 BD 解析式为 y x2, QMx 轴,P(m,0) , Q(m, m 2+ m+2) 、M(m, m2) , 则 QM m 2+ m+2( m2) m2+m+4, F(0, ) 、D(0,2) , DF , QMDF, 当| m 2+m+4| 时,四边形 DMQF 是平行四边形, 解得:m1 或 m3 或 m1+或 1 即 m1 或 m3 或 m1+或 1时,四边形 DMQF 是平行四边形 针对训练针对训练 1 (湖南省长沙一中 2018 届九年级(下)段考)如图 1,一次函数 yx+3 的图象交 x 轴于点 A,交 y
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题07 二次函数背景下的三角形相似全等-2019年中考数学复习压轴题突破之二次函数解析版 专题 07 二次 函数 背景 三角形 相似 全等 2019 年中 数学 复习 压轴 突破 解析
链接地址:https://www.77wenku.com/p-147471.html