2019年中考数学几何变形题归类辅导 专题04 折叠问题(解析版)
《2019年中考数学几何变形题归类辅导 专题04 折叠问题(解析版)》由会员分享,可在线阅读,更多相关《2019年中考数学几何变形题归类辅导 专题04 折叠问题(解析版)(13页珍藏版)》请在七七文库上搜索。
1、 【2019 年中考数学几何变形题归类辅导年中考数学几何变形题归类辅导】 专题专题 4:折叠问题:折叠问题 【典例引领】【典例引领】 例:如图,四边形 ABCD 是正方形,点 E 在直线 BC 上,连接 AE将ABE 沿 AE 所在直线折叠,点 B 的 对应点是点 B,连接 AB并延长交直线 DC 于点 F (1)当点 F 与点 C 重合时如图(1),易证:DF+BE=AF(不需证明); (2)(2)当点 F 在 DC 的延长线上时如图(2),当点 F 在 CD 的延长线上时如图(3),线段 DF、BE、 AF 有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明 【答案】(2)图(2
2、)的结论:DF+BE=AF; 图(3)的结论:BEDF=AF;证明见解答 【分析】 (1)由折叠可得 AB=AB,BE=BE,再根据四边形 ABCD 是正方形,易证 BE=BF,即可证明 DF+BE=AF; (2)图(2)的结论:DF+BE=AF;图(3)的结论:BEDF=AF;证明图(2):延长 CD 到点 G,使 DG=BE,连接 AG,需证ABEADG, 根据 CBAD,得AEB=EAD,即可得出BAE=DAG,则GAF=DAE,则AGD=GAF,即 可得出答案 BE+DF=AF 【解答】 解:(1)由折叠可得 AB=AB,BE=BE, 四边形 ABCD 是正方形, AB=DC=DF,C
3、BE=45 , BE=BF, AF=AB+BF, 即 DF+BE=AF; (3)图(2)的结论:DF+BE=AF; 图(3)的结论:BEDF=AF; 图(2)的证明:延长 CD 到点 G,使 DG=BE,连接 AG, 需证ABEADG, CBAD, AEB=EAD, BAE=BAE, BAE=DAG, GAF=DAE, AGD=GAF, GF=AF,BE+DF=AF; 图(3)的证明:在 BC 上取点 M,使 BM=DF,连接 AM, 需证ABMADF, BAM=FAD,AF=AM ABEABE BAE=EAB, MAE=DAE, ADBE, AEM=DAE, MAE=AEM, ME=MA=A
4、F, BEDF=AF 【强化训练】【强化训练】 1、数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动, 探究线段长度的有关问题. 动手操作:如图 1,在直角三角形纸片 ABC 中,BAC90 ,AB6,AC8.将三角形纸片 ABC 进行 以下操作: 第一步:折叠三角形纸片 ABC 使点 C 与点 A 重合,然后展开铺平,得到折痕 DE; 第二步:将ABC 沿折痕 DE 展开,然后将DEC 绕点 D 逆时针方向旋转得到DFG,点 E,C 的对应 点分别是点 F, G, 射线 GF 与边 AC 交于点 M(点 M 不与点 A 重合), 与边 AB 交于点
5、N, 线段 DG 与 边 AC 交于点 P. 数学思考: (1)求 DC 的长; (2)在DEC 绕点 D 旋转的过程中,试判断 MF 与 ME 的数量关系,并证明你的结论; 问题解决: (3)在DEC 绕点 D 旋转的过程中,探究 下列问题: 如图 2,当 GFBC 时,求 AM 的长; 如图 3,当 GF 经过点 B 时,AM 的长为 当DEC 绕点 D 旋转至 DE 平分FDG 的位置时,试在图 4 中作出此时的DFG 和射线 GF,并直 接写出 AM 的长(要求:尺规作图 ,不写作法,保留 作图痕迹,标记出所有相应的字母) 【答案】【答案】(1) DC5;(2)相等,理由见解析;(3)
6、AM3;AM ;AM10 3 【分析】 (1)理由勾股定理求出 BC 即可解决问题 (2)结论:MF=ME证明 RtDMFRtDME(HL),即可解决问题 (3)如图 2 中,作 AHBC 于 H,交 FG 于 K由 KMCH,推出 ,求出 AK,AH 即可解决问题 证明 BM=MC,设 BM=MC=x,在 RtABM 中,根据 BM2=AB2+AM2,构建方程即可解决问题 尺规作图如图 4-1 所示作 DR 平分CDF,在 DR 上截取 DG=DC,分别以 D,G 为圆心,DE,CE 为 半径画弧,两弧交于点 F,DFG 即为所求如图 4-1 中,连接 DM,设 DG 交 AC 于 T,作
7、THCD 于 H, 作 DK 平分CDG 交 TH 于 K,作 KJDG 于 J 易证DEMDHK(AAS),推出 EM=HK,只要求出 HK 即可 【解答】 解:(1)如图 1 中, DEAC, DEC=A=90 , DEAB, AE=EC, BD=DC, 在 RtABC 中,AB=6,AC=8, BC= =10, CD= BC=5 (2)结论:MF=ME 理由:如图 1 中,连接 DM, DFM=DEM=90 ,DM=DM,DF=DE, RtDMFRtDME(HL), MF=ME (3)如图 2 中,作 AHBC 于 H,交 FG 于 K 易知 ,四边形 DFKH 是矩形, DF=KH=3
8、, AK=AH-KH= , KMCH, , , AM=3 如图 3 中, DG=DB=DC, G=DBG, G=C, MBC=C, BM=MC,设 BM=MC=x, 在 RtABM 中,BM2=AB2+AM2, 62+(8-x)2=x2, x= AM=AC-CM=8- = 故答案为 . 尺规作图如图 4-1 所示作 DR 平分CDF,在 DR 上截取 DG=DC,分别以 D,G 为圆心,DE,CE 为 半径画弧,两弧交于点 F,DFG 即为所求 如图 4-1 中,连接 DM,设 DG 交 AC 于 T,作 THCD 于 H,作 DK 平分CDG 交 TH 于 K,作 KJDG 于 J 易证DE
9、MDHK(AAS),推出 EM=HK,只要求出 HK 即可 TEDE,THDC,DG 平分CDE, TE=TH,设 TE=TH=x,在 RtTCH 中,x2+22=(4-x)2, x= , ( ) , DK 平分CDT,KJDT,KHCD, KJ=KH,设 KJ=KH=y, 在 RtKTJ 中, ( ) ( ) , EM= 2(2016 内蒙古包头市)如图,已知一个直角三角形纸片 ACB,其中ACB=90 ,AC=4,BC=3,E、F 分别是 AC、AB 边上点,连接 EF (1) 图, 若将纸片 ACB 的一角沿 EF 折叠, 折叠后点 A 落在 AB 边上的点 D 处, 且使 S四边形EC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019年中考数学几何变形题归类辅导 专题04 折叠问题解析版 2019 年中 数学 几何 变形 归类 辅导 专题 04 折叠 问题 解析
链接地址:https://www.77wenku.com/p-147595.html