2019年中考数学几何变形题归类辅导 专题01 构造等边三角形 (解析版)
《2019年中考数学几何变形题归类辅导 专题01 构造等边三角形 (解析版)》由会员分享,可在线阅读,更多相关《2019年中考数学几何变形题归类辅导 专题01 构造等边三角形 (解析版)(16页珍藏版)》请在七七文库上搜索。
1、 【2019 年中考数学几何变形题归类辅导年中考数学几何变形题归类辅导】 专题专题 1:构造等边三角形:构造等边三角形 【典例引领】【典例引领】 例:例:在菱形 ABCD 中,ABC=60,E 是对角线 AC 上一点,F 是线段 BC 延长线上一点,且 CF=AE,连 接 BE、EF。 (1)若 E 是线段 AC 的中点,如图 1,易证:BE=EF(不需证明); (2)若 E 是线段 AC 或 AC 延长线上的任意一点,其它条件不变,如图 2、图 3,线段 BE、EF 有怎样的数 量关系,直接写出你的猜想;并选择一种情况给予证明。 【答案】(1)证明见解析;(2)证明见解析 【分析】 首先构造
2、全等三角形, 过点 E 作 EGBC, 可得到AGE 是等边三角形, 就可证出 BGEECF, 进而得出 BE=EF 【解答】 证明:(2)图 2:BE=EF 图 3:BE=EF 图 2 证明如下:过点 E 作 EGBC,交 AB 于点 G 四边形 ABCD 为菱形AB=BC 又ABC=60ABC 是等边三角形 AB=AC ACB=60 又EGBC AGE=ABC=60 又BAC=60 AGE 是等边三角形 AG=AE, BG=CE 又CF=AE GE=CF 又BGE=ECF=120 BGEECF(SAS) BE=EF 图 3 证明如下:过点 E 作 EGBC 交 AB 延长线于点 G 四边形
3、 ABCD 为菱形 AB=BC 又ABC=60 ABC 是等边三角形 AB=AC ACB=60 又EGBC AGE=ABC=60 又BAC=60 AGE 是等边三角形 AG=AE BG=CE 又CF=AE GE=CF AGE =ECF=60 BGEECF(SAS) BE=EF 【强化训练】【强化训练】 1如图,ABC 中,AB=BC,BDAC 于点 D,FAC= ABC,且FAC 在 AC 下方点 P,Q 分别是 射线 BD,射线 AF 上的动点,且点 P 不与点 B 重合,点 Q 不与点 A 重合,连接 CQ,过点 P 作 PECQ 于 点 E,连接 DE (1)若ABC=60,BP=AQ
4、如图 1,当点 P 在线段 BD 上运动时,请直接写出线段 DE 和线段 AQ 的数量关系和位置关系; 如图 2,当点 P 运动到线段 BD 的延长线上时,试判断中的结论是否成立,并说明理由; (2)若ABC=260,请直接写出当线段 BP 和线段 AQ 满足什么数量关系时,能使(1)中的结论 仍然成立(用含的三角函数表示) 【答案】(1)DE= AQ,DEAQ,理由见解析; EAQ,DE= AQ,理由见解析;(2)AQ=2BPsin ,理由见解析. 【分析】 (1)先判断出ABC 是等边三角形,进而判断出CBP=CAQ,即可判断出BPCAQC,再判断 出PCQ 是等边三角形,进而得出 CE=
5、QE,即可得出结论; 同的方法即可得出结论; (2)先判断出,PAQ=90ACQ,BAP=90ACQ,进而得出BCP=ACQ,即可判断出进 而判断出BPCAQC,最后用锐角三角函数即可得出结论 【解答】 (1)DE= AQ,DEAQ, 理由:如图 1,连接 PC,PQ, 在ABC 中,AB=AC,ABC=60, ABC 是等边三角形, ACB=60,AC=BC, AB=BC,BDAC, AD=CD,ABD=CBD= BAC, CAF= ABC, CBP=CAQ, 在BPC 和AQC 中, , BPCAQC(SAS), PC=QC,BPC=ACQ, PCQ=PCA+AQC=PCA+BCP=ACB
6、=60, PCQ 是等边三角形, PECQ, CE=QE, AD=CD, DE= AQ,DEAQ; DEAQ,DE= AQ, 理由:如图 2,连接 PQ,PC, 同的方法得出 DEAQ,DE= AQ; (2)AQ=2BPsin, 理由:连接 PQ,PC, 要使 DE= AQ,DEAQ, AD=CD, CE=QE, PECQ, PQ=PC, 易知,PA=PC, PA=PE=PC 以点 P 为圆心,PA 为半径的圆必过 A,Q,C, APQ=2ACQ, PA=PQ, PAQ=PQA= (180APQ)=90ACQ, CAF=ABD,ABD+BAD=90, BAQ=90, BAP=90PAQ=90A
7、CQ, 易知,BCP=BAP, BCP=ACQ, CBP=CAQ, BPCAQC, , 在 RtBCD 中,sin= , =2 =2sin, AQ=2BPsin 2如图,在 RtABC 中,ACB=90,A=30,点 O 为 AB 中点,点 P 为直线 BC 上的动点(不与点 B、点 C 重合),连接 OC、OP,将线段 OP 绕点 P 顺时针旋转 60,得到线段 PQ,连接 BQ (1)如图 1,当点 P 在线段 BC 上时,请直接写出线段 BQ 与 CP 的数量关系 (2)如图 2,当点 P 在 CB 延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明 理由; (3)如
8、图 3,当点 P 在 BC 延长线上时,若BPO=15,BP=4,请求出 BQ 的长 【答案】(1)BQ=CP;(2)成立:PC=BQ;(3) 【分析】(1)结论:BQ=CP如图 1 中,作 PHAB 交 CO 于 H,可得PCH 是等边三角形,只要证明 POHQPB 即可; (2)成立:PC=BQ作 PHAB 交 CO 的延长线于 H证明方法类似(1); (3) 如图 3 中, 作 CEOP 于 E, 在 PE 上取一点 F, 使得 FP=FC, 连接 CF 设 CE=CO=a, 则 FC=FP=2a, EF= a,在 RtPCE 中,表示出 PC,根据 PC+CB=4,可得方程 ,求出 a
9、 即可解 决问题; 【解答】 解:(1)结论:BQ=CP 理由:如图 1 中,作 PHAB 交 CO 于 H 在 RtABC 中,ACB=90,A=30,点 O 为 AB 中点, CO=AO=BO,CBO=60,CBO 是等边三角形,CHP=COB=60,CPH=CBO=60, CHP=CPH=60, CPH 是等边三角形,PC=PH=CH,OH=PB, OPB=OPQ+QPB=OCB+COP,OPQ=OCP=60,POH=QPB,PO=PQ, POHQPB,PH=QB, PC=BQ (2)成立:PC=BQ理由:作 PHAB 交 CO 的延长线于 H 在 RtABC 中,ACB=90,A=30
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019年中考数学几何变形题归类辅导 专题01 构造等边三角形 解析版 2019 年中 数学 几何 变形 归类 辅导 专题 01 构造 等边三角形 解析
链接地址:https://www.77wenku.com/p-147599.html