2020年中考数学试题分类汇编之十四 最值类题
《2020年中考数学试题分类汇编之十四 最值类题》由会员分享,可在线阅读,更多相关《2020年中考数学试题分类汇编之十四 最值类题(37页珍藏版)》请在七七文库上搜索。
1、2020 年中考数学试题分类汇编之十四 最值类题 一、选择题 10 (2020 成都) (3 分)关于二次函数 2 28yxx,下列说法正确的是( ) A图象的对称轴在y轴的右侧 B图象与y轴的交点坐标为(0,8) C图象与x轴的交点坐标为( 2,0)和(4,0) Dy的最小值为9 【解答】解:二次函数 22 28(1)9(4)(2)yxxxxx , 该函数的对称轴是直线1x ,在y轴的左侧,故选项A错误; 当0 x 时,8y ,即该函数与y轴交于点(0, 8),故选项B错误; 当0y 时,2x 或4x ,即图象与x轴的交点坐标为(2,0)和( 4,0),故选项C错误; 当1x 时,该函数取得
2、最小值9y ,故选项D正确; 故选:D 9.(2020 贵阳)如图,Rt ABC中,90C,利用尺规在BC,BA上分别截取BE, BD,使BEBD;分别以D,E为圆心、以大于 1 2 DE为长的半径作弧,两弧在CBA 内交于点F;作射线BF交AC于点G,若1CG,P为AB上一动点,则GP的最小值 为( ) A. 无法确定 B. 1 2 C. 1 D. 2 【答案】C 【详解】解:由题意可知,当 GPAB 时,GP 的值最小, 根据尺规作图的方法可知,GB 是ABC 的角平分线, C=90 , 当 GPAB 时,GP=CG=1, 故答案为:C 12 (3 分) (2020荆门)在平面直角坐标系中
3、,长为 2 的线段 CD(点 D 在点 C 右侧)在 x 轴上移动,A(0,2) ,B(0,4) ,连接 AC,BD,则 AC+BD 的最小值为( ) A25 B210 C62 D35 解:设 C(m,0) , CD2,D(m+2,0) , A(0,2) ,B(0,4) , AC+BD= 2+ 22+ ( + 2)2+ 42, 要求 AC+BD 的最小值,相当于在 x 轴上找一点 P(m,0) ,使得点 P 到 M(0,2)和 N(2,4)的距离和最小, (PM+PN= 2+ 22+ ( + 2)2+ 42) , 如图 1 中, 作点 M 关于原点 O 的对称点 Q, 连接 NQ 交 x 轴于
4、 P, 连接 MP, 此时 P M+PN 的值最小, N(2,4) ,Q(0,2) PM+PN 的最小值PN+PMPN+PQNQ= 22+ 62=210, AC+BD 的最小值为 210 故选:B 12 (2020 山东泰安) (4 分)如图,点 A,B 的坐标分别为 A(2,0) ,B(0,2) ,点 C 为 坐标平面内一点, BC1, 点 M 为线段 AC 的中点, 连接 OM, 则 OM 的最大值为 ( ) A2 +1 B2 + 1 2 C22 +1 D22 1 2 【解答】解:如图, 点 C 为坐标平面内一点,BC1, C 在B 的圆上,且半径为 1, 取 ODOA2,连接 CD, A
5、MCM,ODOA,OM 是ACD 的中位线, OM= 1 2CD, 当 OM 最大时,即 CD 最大,而 D,B,C 三点共线时,当 C 在 DB 的延长线上时,OM 最大, OBOD2,BOD90,BD22, CD22 +1, OM= 1 2CD= 2 + 1 2,即 OM 的最大值为2 + 1 2; 故选:B 二、填空题 25 (2020 成都) (4 分)如图,在矩形ABCD中,4AB ,3BC ,E,F分别为AB,CD 边的中点动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运 动, 连接PQ, 过点B作BHPQ于点H, 连接DH 若点P的速度是点Q的速度的 2 倍
6、, 在点P从点E运动至点A的过程中, 线段PQ长度的最大值为 3 2 , 线段DH长度的最 小值为 【解答】解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O 作ONCD于N 四边形ABCD是矩形,DFCF,AEEB, 四边形ADFE是矩形, 3EFAD, / /FQPE, MFQMEP, MFFQ MEPE , 2PEFQ, 2EMMF, 2EM,1FM , 当 点P与A重 合 时 ,PQ的 值 最 大 , 此 时 2222 222 2PMAEME, 2222 112MQFQMF, 3 2PQ, / / /MFONBC,MOOB, 1FNCN,3DNDFFN, 1 ()
7、2 2 ONFMBC, 2222 3213ODDNON, BHPQ, 90BHM, OMOB, 22 11 222 22 OHBM, DH ODOH, 132DH, DH的最小值为132, 故答案为3 2,132 15 (2020 河南) .如图, 在扇形BOC中, 60 ,BOCOD平分 BOC交狐BC于点D 点 E为半径OB上一动点若2OB ,则阴影部分周长的最小值为_ 【答案】2 2. 3 【解析】 【分析】 如图,先作扇形OCB关于OB对称的扇形,OAB 连接AD交OB于E,再分别求解 ,AD CD的长即可得到答案 【详解】解:C阴影 ,CEDECD C阴影最短,则CE DE最短, 如
8、图,作扇形OCB关于OB对称的扇形,OAB 连接AD交OB于E, 则,CEAE ,CEDEAEDEAD 此时E点满足CEDE最短, 60 ,COBAOBOD 平分 ,CB 30 ,90 ,DOBDOA 2,OBOAOD 22 222 2,AD 而CD的长为: 302 , 1803 C阴影最短为2 2. 3 故答案为:2 2. 3 17.(2020 四川绵阳)如图,四边形 ABCD 中,ABCD,ABC=60,AD=BC=CD=4,点 M 是 四边形 ABCD 内的一个动点, 满足AMD=90, 则点 M 到直 线 BC 的距离的最小值为 。 答案:2 3 【解析】解:四边形 ABCD 中,AB
9、CD,ABC=60,AD=BC=CD=4, DAC=ABC=60 DAC=CAB=30, ACB=90。 当 M 在 AC 上时,M 到 AC 的距离最小。如图 :AC= 22 844 3, 在 RTAMD 中,AM=ADcos30=4 3 2 =23. CM=AC-AM=4 3-23=2 3. 故填:2 3。 18.(2020 无锡)如图,在Rt ABC中,90ACB,4AB ,点D,E分别在边AB, AC上,且2DBAD,3AEEC连接BE,CD,相交于点O,则ABO面积最大值 为_ 解:如图 1,作 DGAC,交 BE 于点 G, ,BDGBAEODGOCE, 2 , 3 DGBD AE
10、AB 1 3 CE AE , 2 2 1 DG CE ODGOCE =2 DGOD CEOC 2 3 ODCD AB=4, 2 3 ABOABC SS 若ABO面积最大,则 ABC面积最大, 如图 2,当点 ABC 为等腰直角三角形时,ABC面积最大,为 1 4 2=4 2 , ABO面积最大值为 28 4= 33 + 故答案为: 8 3 15 (2020 新疆生产建设兵团) (5 分)如图,在ABC 中,A90,B60,AB 2,若 D 是 BC 边上的动点,则 2AD+DC 的最小值为 6 【分析】作点 A 关于 BC 的对称点 A,连接 AA,AD,过 D 作 DEAC 于 E,依据 A
11、 与 A关于 BC 对称,可得 ADAD,进而得出 AD+DEAD+DE,当 A,D,E 在同一直线 上时,AD+DE 的最小值等于 AE 的长,依据 AD+DE 的最小值为 3,即可得到 2AD+CD 的最小值为 6 【解答】解:如图所示,作点 A 关于 BC 的对称点 A,连接 AA,AD,过 D 作 DEAC 于 E, ABC 中,BAC90,B60,AB2, BH1,AH= 3,AA23,C30, RtCDE 中,DE= 1 2CD,即 2DECD, A 与 A关于 BC 对称, ADAD, AD+DEAD+DE, 当 A,D,E 在同一直线上时,AD+DE 的最小值等于 AE 的长,
12、 此时,RtAAE 中,AEsin60AA= 3 2 23 =3, AD+DE 的最小值为 3, 即 2AD+CD 的最小值为 6, 故答案为:6 18 (2020 黑龙江龙东) (3 分)如图,在边长为 4 的正方形ABCD中,将ABD沿射线BD 平移,得到EGF,连接EC、GC求ECGC的最小值为 4 5 【解答】解:如图,连接DE,作点D关于直线AE的对称点T,连接AT,ET,CT 四边形ABCD是正方形, 4ABBCAD,90ABC,45ABD, / /AEBD,45EADABD , D,T关于AE对称,4ADAT,45TAEEAD , 90TAD, 90BAD,B,A,T共线, 22
13、 4 5CTBTBC, EGCD,/ /EGCD,四边形EGCD是平行四边形, CGEC,ECCGECEDECTE, TEEC TC,4 5ECCG, ECCG的最小值为4 5 16 (2020 江苏连云港) (3 分)如图,在平面直角坐标系xOy中,半径为 2 的O与x轴的 正半轴交于点A,点B是O上一动点,点C为弦AB的中点,直线 3 3 4 yx与x轴、y轴 分别交于点D、E,则CDE面积的最小值为 2 解:如图,连接OB,取OA的中点M,连接CM,过点M作MNDE于N ACCB,AMOM, 1 1 2 MCOB, 点C的运动轨迹是以M为圆心,1 为半径的M,设M交MN于C 直线 3 3
14、 4 yx与x轴、y轴分别交于点D、E, (4,0)D,(0, 3)E,4OD,3OE , 22 345DE, MDNODE ,MNDDOE ,DNMDOE, MNDM OEDE , 3 35 MN , 9 5 MN, 当点C与C重合时,C DE的面积最小,最小值 19 5(1)2 25 , 故答案为 2 18 (3 分) (2020徐州)在ABC 中,若 AB6,ACB45则ABC 的面积的最大 值为 92 +9 【解答】解:作ABC 的外接圆O,过 C 作 CMAB 于 M, 弦 AB 已确定, 要使ABC 的面积最大,只要 CM 取最大值即可, 如图所示,当 CM 过圆心 O 时,CM
15、最大, CMAB,CM 过 O, AMBM(垂径定理) , ACBC, AOB2ACB24590, OMAM= 1 2AB= 1 2 6 =3, OA= 2+ 2=32, CMOC+OM32 +3, SABC= 1 2ABCM= 1 2 6(32 +3)92 +9 故答案为:92 +9 三、解答题 22(2020 安徽)(12 分) 在平面直角坐标系中, 已知点(1,2)A,(2,3)B,(2,1)C, 直线yxm 经过点A,抛物线 2 1yaxbx恰好经过A,B,C三点中的两点 (1)判断点B是否在直线yxm上,并说明理由; (2)求a,b的值; (3) 平移抛物线 2 1yaxbx,使其顶
16、点仍在直线yxm上,求平移后所得抛物线与y 轴交点纵坐标的最大值 【解答】解: (1)点B是在直线yxm上,理由如下: 直线yxm经过点(1,2)A, 21m ,解得1m , 直线为1yx, 把2x 代入1yx得3y , 点(2,3)B在直线yxm上; (2)直线1yx与抛物线 2 1yaxbx都经过点(0,1),且B、C两点的横坐标相同, 抛物线只能经过A、C两点, 把(1,2)A,(2,1)C代入 2 1yaxbx得 12 4211 ab ab , 解得1a ,2b ; (3)由(2)知,抛物线为 2 21yxx, 设平移后的抛物线为 2 yxpxq,其顶点坐标为( 2 p , 2 ) 4
17、 p q, 顶点仍在直线1yx上, 2 1 42 pp q, 2 1 42 pp q , 抛物线 2 yxpxq与y轴的交点的纵坐标为q, 2 2 15 1(1) 4244 pp qp , 当1p 时,平移后所得抛物线与y轴交点纵坐标的最大值为 5 4 28 (2020 成都) (12 分)在平面直角坐标系xOy中,已知抛物线 2 yaxbxc与x轴交 于( 1,0)A ,(4,0)B两点,与y轴交于点(0, 2)C (1)求抛物线的函数表达式; (2)如图 1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记BD E 的面积为 1 S,ABE的面积为 2 S,求 1 2 S
18、S 的最大值; (3)如图 2,连接AC,BC,过点O作直线/ /lBC,点P,Q分别为直线l和抛物线上的 点试探究:在第一象限是否存在这样的点P,Q,使PQBCAB若存在,请求出所 有符合条件的点P的坐标;若不存在,请说明理由 【解答】解: (1)设抛物线的解析式为(1)(4)ya xx 将(0, 2)C代入得:42a ,解得 1 2 a , 抛物线的解析式为 1 (1)(4) 2 yxx,即 2 13 2 22 yxx (2) 过点D作DGx轴于点G, 交BC于点F, 过点A作AKx轴交BC的延长线于点K, / /AKDG, AKEDFE, DFDE AKAE , 1 2 BDE ABE
19、SSDEDF SSAEAK , 设直线BC的解析式为ykxb, 40 2 kb b ,解得 1 2 2 k b , 直线BC的解析式为 1 2 2 yx, ( 1,0)A , 15 2 22 y , 5 2 AK, 设 2 13 ( ,2) 22 D mmm,则 1 ( ,2) 2 F mm , 22 1131 222 2222 DFmmmmm 2 22 1 2 1 2 1414 2 (2) 5 5555 2 mm S mmm S 当2m 时, 1 2 S S 有最大值,最大值是 4 5 (3)符合条件的点P的坐标为 68 34 (,) 99 或 62 41 341 (,) 55 / /lBC
20、, 直线l的解析式为 1 2 yx, 设( ,) 2 a P a, 当点P在直线BQ右侧时,如图 2,过点P作PNx轴于点N,过点Q作QM 直线PN 于点M, ( 1,0)A ,(0, 2)C,(4,0)B, 5AC,5AB ,2 5BC , 222 ACBCAB, 90ACB, PQBCAB, 1 2 PQAC PBBC , 90QMPBNP, 90MQPMPQ,90MPQPBN, MQPPBN, QPMPBN, 1 2 QMPMPQ PNBNPB , 4 a QM, 11 (4)2 22 PMaa, 2MNa, 3 44 44 a BNQMaa, 3 (4Qa,2)a, 将点Q的坐标代入抛
21、物线的解析式得 2 1333 ()22 2424 aaa, 解得0a (舍去)或 68 9 a 68 34 (,) 99 P 当点P在直线BQ左侧时, 由的方法同理可得点Q的坐标为 5 ( 4 a,2) 此时点P的坐标为 62 41 341 (,) 55 25.(2020 福建)已知直线 1: 210 lyx交y轴于点A,交x轴于点B,二次函数的图象 过,A B两点, 交x轴于另一点C,4BC , 且对于该二次函数图象上的任意两点 111 ,P x y, 222 ,P x y,当 12 5xx时,总有 12 yy (1)求二次函数的表达式; (2)若直线 2: (10)lymxn n,求证:当
22、 2m时, 21 / /ll; (3)E为线段BC上不与端点重合的点, 直线 3: 2 lyxq过点C且交直线AE于点F, 求ABE与CEF面积之和的最小值 【答案】(1) 2 21210yxx;(2) 详见解析;(3) ABEFCE SS的最小值为40 2 40 【解析】 【分析】 (1) 先根据坐标轴上点的坐标特征由一次函数的表达式求出 A, B 两点的坐标, 再根据 BC=4, 得出点 C 的坐标,最后利用待定系数法可求二次函数的表达式; (2)利用反证法证明即可; (3)先求出 q 的值,利用/CF AB,得出FCEABE,设04 BEtt,然后用 含 t 的式子表示出 ABEFCE
23、SS的面积,再利用二次函数的性质求解即可 【详解】解: (1)对于 1: 210 lyx, 当0 x时,10y ,所以0,10A; 当0y 时,2100 x,5x ,所以5,0B, 又因为4BC ,所以9,0C或1,0C, 若抛物线过9,0C,则当57x时,y随x的增大而减少,不符合题意,舍去 若抛物线过1,0C,则当3x 时,必有y随x的增大而增大,符合题意 故可设二次函数的表达式为 2 10yaxbx, 依题意,二次函数的图象过5,0B,1,0C两点, 所以 255100 100 ab ab ,解得 2 12 a b 所求二次函数的表达式为 2 21210yxx (2)当2m时,直线 2:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020年中考数学试题分类汇编之十四 最值类题 年中 数学试题 分类 汇编 十四
链接地址:https://www.77wenku.com/p-150444.html