2020年中考数学试题分类汇编之十五 新概念规律类题
《2020年中考数学试题分类汇编之十五 新概念规律类题》由会员分享,可在线阅读,更多相关《2020年中考数学试题分类汇编之十五 新概念规律类题(34页珍藏版)》请在七七文库上搜索。
1、 第 1 页 共 34 页 2020 年中考数学试题分类汇编之十五 新概念新规律题新概念新规律题 一、选择题 7.(2020河南)定义运算: 2 1mnmnmn 例如 2 :424 24 2 17 则 方程10 x 的根的情况为( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根 D. 只有一个实数根 【答案】A 【详解】解:根据定义得: 2 110,xxx 1,1,1,abc 2 2 414 115bac 0, 原方程有两个不相等的实数根, 故选. A 10.(2020 湖北武汉)下列图中所有小正方形都是全等的图(1)是一张由 4 个小正方形组 成的“L”形纸片,图(
2、2)是一张由 6 个小正方形组成的3 2 方格纸片把“L”形纸片放置 在图(2)中,使它恰好盖住其中的 4 个小正方形,共有如图(3)中的 4 种不同放置方法, 图(4)是一张由 36 个小正方形组成的6 6方格纸片,将“L”形纸片放置在图(4)中,使 它恰好盖住其中的 4 个小正方形,共有n种不同放置方法,则n的值是( ) A. 160 B. 128 C. 80 D. 48 解:由图可知,在6 6方格纸片中,3 2方格纸片的个数为5 420 (个) 则20 480n 故选:C 第 2 页 共 34 页 4.(2020 重庆 A 卷)把黑色三角形按如图所示的规律拼图案,其中第个图案中有 1个黑
3、 色三角形,第个图案中有 3个黑色三角形,第个图案中有 6个黑色三角形,按此规 律排列下去,则第个图案中黑色三角形的个数为( ) A. 10 B. 15 C. 18 D. 21 解:第个图案中黑色三角形的个数为 1, 第个图案中黑色三角形的个数 31+2, 第个图案中黑色三角形的个数 61+2+3, 第个图案中黑色三角形的个数为 1+2+3+4+515, 故选:B 8.(2020 重庆 B 卷)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第个 图形一共有 5 个实心圆点,第个图形一共有 8 个实心圆点,第个图形一共有 11 个实心 圆点,按此规律排列下去,第个图形中实心圆点的个数为(
4、 ) A.18 B. 19 C.20 D.21 答案 C. 9(2020 山东枣庄)(3 分) 对于实数a、b, 定义一种新运算“”为: 2 1 ab ab , 这 里 等 式 右 边 是 实 数 运 算 例 如 : 2 11 13 1 38 则 方 程 2 ( 2)1 4 x x 的解是( ) A4x B5x C6x D7x 【解答】解:根据题意,得 12 1 44xx , 去分母得:12(4)x, 解得:5x , 经检验5x 是分式方程的解 第 3 页 共 34 页 故选:B 8 (3 分) (2020常德)如图,将一枚跳棋放在七边形 ABCDEFG 的顶点 A 处,按顺时针方 向移动这枚
5、跳棋 2020 次移动规则是:第 k 次移动 k 个顶点(如第一次移动 1 个顶点, 跳棋停留在 B 处,第二次移动 2 个顶点,跳棋停留在 D 处) ,按这样的规则,在这 2020 次移动中,跳棋不可能停留的顶点是( ) AC、E BE、F CG、C、E DE、C、F 【解答】解:经实验或按下方法可求得顶点 C,E 和 F 棋子不可能停到 设顶点 A,B,C,D,E,F,G 分别是第 0,1,2,3,4,5,6 格, 因棋子移动了 k 次后走过的总格数是 1+2+3+k= 1 2k(k+1) ,应停在第 1 2k(k+1)7p 格, 这时 P 是整数,且使 0 1 2k(k+1)7p6,分别
6、取 k1,2,3,4,5,6,7 时, 1 2k(k+1)7p1,3,6,3,1,0,0,发现第 2,4,5 格没有停棋, 若 7k2020, 设 k7+t(t1,2,3)代入可得,1 2k(k+1)7p7m+ 1 2t(t+1) , 由此可知,停棋的情形与 kt 时相同, 故第 2,4,5 格没有停棋,即顶点 C,E 和 F 棋子不可能停到 故选:D 7 (3 分) (2020烟台)如图,OA1A2为等腰直角三角形,OA11,以斜边 OA2为直角边 作等腰直角三角形 OA2A3,再以 OA3为直角边作等腰直角三角形 OA3A4,按此规律 作下去,则 OAn的长度为( ) 第 4 页 共 34
7、 页 A (2)n B (2)n 1 C ( 2 2 )n D ( 2 2 )n 1 【解答】解:OA1A2为等腰直角三角形,OA11, OA2= 2; OA2A3为等腰直角三角形, OA32= (2)2; OA3A4为等腰直角三角形, OA422 = (2 )3 OA4A5为等腰直角三角形, OA54= (2)4, OAn的长度为(2)n 1 故选:B 12 (2020 云南) (4 分)按一定规律排列的单项式:a,2a,4a,8a,16a,32a, 第 n 个单项式是( ) A (2)n 1a B (2)na C2n 1a D2na 解:a(2)1 1a, 2a(2)2 1a, 4a(2)
8、3 1a, 8a(2)4 1a, 16a(2)5 1a, 32a(2)6 1a, 由上规律可知,第 n 个单项式为: (2)n 1a 选:A 二、填空题 9. (2020 江西) 公元前 2000 年左右, 古巴比伦人使用的楔形文字中有两个符号 (如图所示) , 一个钉头形代表 1,一个尖头形代表 10,在古巴比伦的记数系统中,人们使用的标记方法和 第 5 页 共 34 页 我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方 法,右下面符号表示一个两位数,则这个两位数是 【解析】依题意可得,有两个尖头表示20102,有 5 个丁头表示15,故这个两位数 为 25
9、17 (2020 贵州黔西南) (3 分) 如图, 是一个运算程序的示意图, 若开始输入 x 的值为 625, 则第 2020 次输出的结果为 1 【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案 【解答】解:当 x625 时,1 5x125, 当 x125 时,1 5x25, 当 x25 时,1 5x5, 当 x5 时,1 5x1, 当 x1 时,x+45, 当 x5 时,1 5x1, 依此类推,以 5,1 循环, (20202)21010, 即输出的结果是 1, 故答案为:1 19 (2020 贵州黔西南) (3 分)如图图形都是由同样大小的菱形按照一定规律所组成的,其 中第
10、个图形中一共有 3 个菱形,第个图形中一共有 7 个菱形,第个图形中一共有 13 个菱形,按此规律排列下去,第个图形中菱形的个数为 57 第 6 页 共 34 页 【解答】解:第个图形中一共有 3 个菱形,即 2+113; 第个图形中一共有 7 个菱形,即 3+227; 第个图形中一共有 13 个菱形,即 4+3313; , 按此规律排列下去, 所以第个图形中菱形的个数为:8+7757 故答案为:57 17 (2020 齐齐哈尔) ( (3 分)如图,在平面直角坐标系中,等腰直角三角形沿 x 轴正半 轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形第一次滚动 后点 A1(0,2
11、)变换到点 A2(6,0) ,得到等腰直角三角形;第二次滚动后点 A2变换 到点 A3(6,0) ,得到等腰直角三角形;第三次滚动后点 A3变换到点 A4(10,42) , 得到等腰直角三角形;第四次滚动后点 A4变换到点 A5(10+122,0) ,得到等腰直角 三角形;依此规律,则第 2020 个等腰直角三角形的面积是 22020 【解答】解:点 A1(0,2) , 第 1 个等腰直角三角形的面积= 1 2 2 2 =2, A2(6,0) , 第 2 个等腰直角三角形的边长为62 2 =22, 第 2 个等腰直角三角形的面积= 1 2 22 22 =422, A4(10,42) , 第 7
12、 页 共 34 页 第 3 个等腰直角三角形的边长为 1064, 第 3 个等腰直角三角形的面积= 1 2 4 4 =823, 则第 2020 个等腰直角三角形的面积是 22020; 故答案为:22020(形式可以不同,正确即得分) 17. (2020 甘肃定西)已知 2 (4)5yxx,当x分别取 1,2,3,2020 时,所对 应y值的总和是_. 答案:2032 18 (2020 辽宁抚顺) (3 分)如图,四边形 ABCD 是矩形,延长 DA 到点 E,使 AEDA, 连接 EB,点 F1是 CD 的中点,连接 EF1,BF1,得到EF1B;点 F2是 CF1的中点,连 接 EF2,BF
13、2,得到EF2B;点 F3是 CF2的中点,连接 EF3,BF3,得到EF3B; 按照此规律继续进行下去,若矩形 ABCD 的面积等于 2,则EFnB 的面积为 (用含正整数 n 的式子表示) 解:AEDA,点 F1是 CD 的中点,矩形 ABCD 的面积等于 2, EF1D 和EAB 的面积都等于 1, 点 F2是 CF1的中点, EF1F2的面积等于, 同理可得EFn1Fn的面积为, 第 8 页 共 34 页 BCFn的面积为 22, EFnB 的面积为 2+112(1) 故答案为: 15 (2020 内蒙古呼和浩特) (3 分) “书法艺术课”开课后,某同学买了一包纸练习软笔书 法,且每
14、逢星期几写几张,即每星期一写 1 张,每星期二写 2 张,每星期日写 7 张,若该同学从某年的 5 月 1 日开始练习,到 5 月 30 日练习完后累积写完的宣纸总数过 120 张,则可算得 5 月 1 日到 5 月 28 日他共用宣纸张数为 112 ,并可推断出 5 月 30 日应该是星期几 五、六、日 解:5 月 1 日5 月 30 日共 30 天,包括四个完整的星期, 5 月 1 日5 月 28 日写的张数为:4112, 若 5 月 30 日为星期一,所写张数为 112+7+1120, 若 5 月 30 日为星期二,所写张数为 112+1+2120, 若 5 月 30 日为星期三,所写张
15、数为 112+2+3120, 若 5 月 30 日为星期四,所写张数为 112+3+4120, 若 5 月 30 日为星期五,所写张数为 112+4+5120, 若 5 月 30 日为星期六,所写张数为 112+5+6120, 若 5 月 30 日为星期日,所写张数为 112+6+7120, 故 5 月 30 日可能为星期五、六、日 故答案为:112;五、六、日 20 (2020 黑龙江龙东) (3 分)如图,直线AM的解析式为1yx与x轴交于点M,与y 轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1)过点B作 1 EOMA交MA于 点E,交x轴于点 1 O,过点 1 O作x轴的垂
16、线交MA于点 1 A,以 11 O A为边作正方形 1111 O ABC, 点 1 B的坐标为(5,3)过点 1 B作 12 E OMA交MA于 1 E,交x轴于点 2 O,过点 2 O作x轴的垂 线交MA于点 2 A以 22 O A为边作正方形 2222 O A B C则点 2020 B的坐标 2020 2 31, 2020 3 第 9 页 共 34 页 解:点B坐标为(1,1), 1 1OAABBCCOCO, 1(2,3) A, 11111112 3AOABBCC O, 1(5,3) B, 2(8,9) A, 22222223 9A OA BB CC O, 2(17,9) B, 同理可得
17、4(53,27) B, 5(161,81) B, 由上可知,(2 31,3 )Bnnn, 当2020n 时,(2 32020 1,32020)Bn 故答案为: 2020 (2 31, 2020 3) 15 (2020 黑龙江牡丹江) (3 分)一列数 1,5,11,19按此规律排列,第 7 个数是( ) A37 B41 C55 D71 解:1 1 2 1 , 5231, 11341 , 19451, 第n个数为(1)1n n, 则第 7 个数是:55 故选:C 15 (2020 四川遂宁) (4 分)如图所示,将形状大小完全相同的“”按照一定规律摆成下 第 10 页 共 34 页 列图形,第
18、1 幅图中“”的个数为 a1,第 2 幅图中“”的个数为 a2,第 3 幅图中“” 的个数为 a3,以此类推,若 2 1 + 2 2 + 2 3 + + 2 = 2020 (n 为正整数) ,则 n 的值为 4039 【解答】解:由图形知 a112,a223,a334, ann(n+1) , 2 1 + 2 2 + 2 3 + + 2 = 2020, 2 12 + 2 23 + 2 34 + + 2 (+1) = 2020, 2(1 1 2 + 1 2 1 3 + 1 3 1 4 + + 1 1 +1)= 2020, 2(1 1 +1)= 2020, 1 1 +1 = 4040,解得 n403
19、9, 经检验:n4039 是分式方程的解, 故答案为:4039 16 (2020 广西南宁) (3 分)如图,某校礼堂的座位分为四个区域,前区一共有 8 排,其中 第 1 排共有 20 个座位(含左、右区域) ,往后每排增加两个座位,前区最后一排与后区 各排的座位数相同,后区一共有 10 排,则该礼堂的座位总数是 556 个 解:因为前区一共有 8 排,其中第 1 排共有 20 个座位(含左、右区域) , 往后每排增加两个座位, 所以前区最后一排座位数为:20+2(81)34, 所以前区座位数为: (20+34)82216, 第 11 页 共 34 页 以为前区最后一排与后区各排的座位数相同,
20、后区一共有 10 排, 所以后区的座位数为:1034340, 所以该礼堂的座位总数是 216+340556 个 故答案为:556 个 16 (3 分) (2020常德)阅读理解:对于 x3(n2+1)x+n 这类特殊的代数式可以按下面的 方法分解因式: x3(n2+1)x+nx3n2xx+nx(x2n2)(xn)x(xn) (x+n)(xn) (xn) (x2+nx1) 理解运用:如果 x3(n2+1)x+n0,那么(xn) (x2+nx1)0,即有 xn0 或 x2+nx10, 因此,方程 xn0 和 x2+nx10 的所有解就是方程 x3(n2+1)x+n0 的解 解决问题:求方程 x35
21、x+20 的解为 x2 或 x1+2或 x12 【解答】解:x35x+20, x34xx+20,x(x24)(x2)0, x(x+2) (x2)(x2)0, 则(x2)x(x+2)10,即(x2) (x2+2x1)0, x20 或 x2+2x10,解得 x2 或 x12, 故答案为:x2 或 x1+2或 x12 17 (3 分) (2020徐州)如图,MON30,在 OM 上截取 OA1= 3过点 A1作 A1B1 OM,交 ON 于点 B1,以点 B1为圆心,B1O 为半径画弧,交 OM 于点 A2;过点 A2作 A2B2OM,交 ON 于点 B2,以点 B2为圆心,B2O 为半径画弧,交
22、OM 于点 A3;按此规 律,所得线段 A20B20的长等于 219 【解答】解:B1OB1A1,B1A1OA2,OA1A1A2, B2A2OM,B1A1OM, B1A1B2A2, B1A1= 1 2A2B2, A2B22A1B1, 第 12 页 共 34 页 同法可得 A3B32A2B222A1B1, 由此规律可得 A20B20219A1B1, A1B1OA1tan30= 3 3 3 =1, A20B20219, 故答案为 219 12(2020 山西)(3 分) 如图是一组有规律的图案, 它们是由边长相等的正三角形组合而成, 第 1 个图案有 4 个三角形,第 2 个图案有 7 个三角形,
23、第 3 个图案有 10 个三角形按此 规律摆下去,第 n 个图案有 (3n+1) 个三角形(用含 n 的代数式表示) 【分析】根据图形的变化发现规律,即可用含 n 的代数式表示 解:第 1 个图案有 4 个三角形,即 431+1 第 2 个图案有 7 个三角形,即 732+1 第 3 个图案有 10 个三角形,即 1033+1 按此规律摆下去, 第 n 个图案有(3n+1)个三角形 故答案为: (3n+1) 17.(2020 东莞)如图,等腰 12 Rt OA A, 112 1OAA A,以 2 OA为直角边作 23 Rt OA A, 再以 3 OA为直角边作 34 Rt OA A,以此规律作
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020年中考数学试题分类汇编之十五 新概念规律类题 年中 数学试题 分类 汇编 十五 新概念 规律
链接地址:https://www.77wenku.com/p-150450.html