1.2矩形的性质与判定 教案
《1.2矩形的性质与判定 教案》由会员分享,可在线阅读,更多相关《1.2矩形的性质与判定 教案(7页珍藏版)》请在七七文库上搜索。
1、12 矩形的性质与判定矩形的性质与判定 第第 1 课时课时 矩形的性质矩形的性质 1掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系;(重点) 2会运用矩形的概念和性质来解决有关问题(难点) 一、情景导入 1展示生活中一些平行四边形的实际应用图片(推拉门、活动衣架、篱笆、井架等),想一想: 这里面应用了平行四边形的什么性质? 2思考:拿一个活动的平行四边形教具,轻轻拉动一个点,不管怎么拉,它还是一个平行四 边形吗?为什么?(动画演示拉动过程如图) 3再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图 形(小学学过的长方形),引出本课题及矩形定义 矩形是我们最常
2、见的图形之一,例如书桌面、教科书的封面等都是矩形 有一个角是直角的平行四边形是矩形矩形是平行四边形,但平行四边形不一定是矩形,矩形 是特殊的平行四边形,它具有平行四边形的所有性质 二、合作探究 探究点一:矩形的性质 【类型一】 矩形的四个角都是直角 如图,矩形 ABCD 中,点 E 在 BC 上,且 AE 平分BAC.若 BE4,AC15,则AEC 的面积为( ) A15 B30 C45 D60 解析:如图,过 E 作 EFAC,垂足为 F. AE 平分BAC,EFAC,BEAB, EFBE4, SAEC1 2AC EF 1 215430.故选 B. 方法总结:矩形的四个角都是直角,常作为证明
3、或求值的隐含条件 【类型二】 矩形的对角线相等 如图所示, 矩形ABCD的两条对角线相交于点O, AOD60 , AD2, 则AC的长是( ) A2 B4 C2 3 D4 3 解析:根据矩形的对角线互相平分且相等可得 OCODOA1 2AC,由AOD60 得AOD 为等边三角形,即可求出 AC 的长 四边形 ABCD 为矩形, ACBD,OAOC1 2AC,ODOB 1 2BD, OAOD.AOD60 , AOD 为等边三角形, OAOD2,AC2OA4. 故选 B. 方法总结:矩形的两条对角线互相平分且相等,即对角线把矩形分成四个等腰三角形,当两条 对角线的夹角为 60 或 120 时,图中
4、有等边三角形,从而可以利用等边三角形的性质解题 探究点二:直角三角形斜边上的中线等于斜边的一半 如图,已知 BD,CE 是ABC 不同边上的高,点 G,F 分别是 BC,DE 的中点,试说明 GFDE. 解析:本题的已知条件中已经有直角三角形,有斜边上的中点,由此可联想到应用“直角三角 形斜边上的中线等于斜边的一半”这一定理 解:连接 EG,DG. BD,CE 是ABC 的高, BDCBEC90 . 点 G 是 BC 的中点, EG1 2BC,DG 1 2BC. EGDG. 又点 F 是 DE 的中点, GFDE. 方法总结:在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角
5、形的 问题,然后利用等腰三角形“三线合一”的性质解题 探究点三:矩形的性质的应用 【类型一】 利用矩形的性质求有关线段的长度 如图, 已知矩形 ABCD 中, E 是 AD 上的一点, F 是 AB 上的一点, EFEC, 且 EFEC, DE4cm,矩形 ABCD 的周长为 32cm,求 AE 的长 解析:先判定AEFDCE,得 CDAE,再根据矩形的周长为 32 列方程求出 AE 的长 解:四边形 ABCD 是矩形, AD90 , CEDECD90 . 又EFEC, AEFCED90 , AEFECD. 而 EFEC, AEFDCE, AECD. 设 AExcm, CDxcm,AD(x4)
6、cm, 则有 x4x16,解得 x6. 即 AE 的长为 6cm. 方法总结:矩形的各角为直角,常作为全等的一个条件用来证三角形全等,可借助直角的条件 解决直角三角形中的问题 【类型二】 利用矩形的性质求有关角度的大小 如图,在矩形 ABCD 中,AEBD 于 E,DAE:BAE3:1,求BAE 和EAO 的度 数 解析:由BAE 与DAE 之和为 90 及这两个角之比可求得这两个角的度数,从而得ABO 的 度数,再根据矩形的性质易得EAO 的度数 解:四边形 ABCD 是矩形,DAB90 , AO1 2AC,BO 1 2BD,ACBD, BAEDAE90 ,AOBO. 又DAE:BAE3:1
7、, BAE22.5 ,DAE67.5 . AEBD, ABE90 BAE90 22.5 67.5 , OABABE67.5 EAO67.5 22.5 45 . 方法总结: 矩形的性质是证明线段相等或倍分、 角的相等与求值及线段平行或垂直的重要依据 【类型三】 利用矩形的性质求图形的面积 如图所示,EF 过矩形 ABCD 对角线的交点 O,且分别交 AB、CD 于 E、F,那么阴影部 分的面积是矩形 ABCD 面积的( ) A.1 5 B. 1 4 C.1 3 D. 3 10 解析: 由四边形 ABCD 为矩形, 易证得BEODFO, 则阴影部分的面积等于AOB 的面积, 而AOB 的面积为矩形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.2矩形的性质与判定 教案 1.2 矩形 性质 判定
链接地址:https://www.77wenku.com/p-150568.html