2020年秋北师大版九年级上《第2章 一元二次方程》章末测试卷含答案解析
《2020年秋北师大版九年级上《第2章 一元二次方程》章末测试卷含答案解析》由会员分享,可在线阅读,更多相关《2020年秋北师大版九年级上《第2章 一元二次方程》章末测试卷含答案解析(16页珍藏版)》请在七七文库上搜索。
1、第第二二章章 一元二次方程测试卷(一元二次方程测试卷(1) 一、精心选一选,相信自己的判断! (每小题一、精心选一选,相信自己的判断! (每小题 3 分,共分,共 30 分)分) 1 (3 分)方程 2x23=0 的一次项系数是( ) A3 B2 C0 D3 2 (3 分)方程 x2=2x 的解是( ) Ax=0 Bx=2 Cx1=0,x2=2 Dx1=0,x2= 3 (3 分)方程 x24=0 的根是( ) Ax=2 Bx=2 Cx1=2,x2=2 Dx=4 4 (3 分)若一元二次方程 2x(kx4)x2+6=0 无实数根,则 k 的最小整数值 是( ) A1 B0 C1 D2 5(3 分
2、) 用配方法解一元二次方程 x24x5=0 的过程中, 配方正确的是 ( ) A (x+2)2=1 B (x2)2=1 C (x+2)2=9 D (x2)2=9 6 (3 分)在一幅长 80cm,宽 50cm 的矩形风景画的四周镶一条金色纸边,做成 一幅矩形挂图,如图所示,如果要使整个挂图的面积是 5400cm2,设金色纸边的 宽为 xcm,那么 x 满足的方程是( ) Ax2+130 x1400=0 Bx2+65x350=0 Cx2130 x1400=0 Dx265x350=0 7 (3 分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积 是( ) A6 B8 C10 D12
3、8 (3 分)方程 x29x+18=0 的两个根是等腰三角形的底和腰,则这个三角形的 周长为( ) A12 B12 或 15 C15 D不能确定 9(3 分) 若关于一元二次方程 x2+2x+k+2=0 的两个根相等, 则 k 的取值是 ( ) A1 B1 或1 C1 D2 10 (3 分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠 送一件,全组共互赠了 132 件,那么全组共有( )名学生 A12 B12 或 66 C15 D33 二、耐心填一填: (把答案填放相应的空格里每小题二、耐心填一填: (把答案填放相应的空格里每小题 3 分,共分,共 15 分) 分) 11(3 分
4、) 写一个一元二次方程, 使它的二次项系数是3, 一次项系数是 2: 12 (3 分)1 是方程 x2+bx5=0 的一个根,则 b= ,另一个根是 13 (3 分)方程(2y+1) (2y3)=0 的根是 14 (3 分)已知一元二次方程 x23x1=0 的两根为 x1、x2,x1+x2= 15 (3 分)用换元法解方程+2x=x23 时,如果设 y=x22x,则原方程 可化为关于 y 的一元二次方程的一般形式是 三、按要求解一元二次方程: (三、按要求解一元二次方程: (20 分)分) 16 (20 分)按要求解一元二次方程 (1)4x28x+1=0(配方法) (2)7x(5x+2)=6(
5、5x+2) (因式分解法) (3)3x2+5(2x+1)=0(公式法) (4)x22x8=0 四、细心做一做:四、细心做一做: 17 (6 分)有一面积为 150m2的长方形鸡场,鸡场的一边靠墙(墙长 18 m) , 另三边用竹篱笆围成,如果竹篱笆的总长为 35 m,求鸡场的长与宽各为多少? 18 (6 分)如图所示,在一块长为 32 米,宽为 15 米的矩形草地上,在中间要 设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八 分之一,请问小路的宽应是多少米? 19 (7 分)某企业 2006 年盈利 1500 万元,2008 年克服全球金融危机的不利影 响,仍实现盈利 2
6、160 万元从 2006 年到 2008 年,如果该企业每年盈利的年增 长率相同,求: (1)该企业 2007 年盈利多少万元? (2)若该企业盈利的年增长率继续保持不变,预计 2009 年盈利多少万元? 20 (7 分) 中华商场将进价为 40 元的衬衫按 50 元售出时, 每月能卖出 500 件, 经市场调查,这种衬衫每件涨价 4 元,其销售量就减少 40 件如果商场计划每 月赚得 8000 元利润,那么售价应定为多少?这时每月应进多少件衬衫? 21 (9 分)如图 1,在 RtABC 中,C=90,AC=8m,BC=6m,点 P 由 C 点出 发以 2m/s 的速度向终点 A 匀速移动,
7、同时点 Q 由点 B 出发以 1m/s 的速度向终 点 C 匀速移动,当一个点到达终点时另一个点也随之停止移动 (1)经过几秒PCQ 的面积为ACB 的面积的? (2)经过几秒,PCQ 与ACB 相似? (3)如图 2,设 CD 为ACB 的中线,那么在运动的过程中,PQ 与 CD 有可能互 相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由 参考答案与试题解析参考答案与试题解析 一、精心选一选,相信自己的判断! (每小题一、精心选一选,相信自己的判断! (每小题 3 分,共分,共 30 分)分) 1 (3 分)方程 2x23=0 的一次项系数是( ) A3 B2 C0 D3 【考点】
8、一元二次方程的一般形式 【分析】一元二次方程的一般形式是 ax2+bx+c=0(a,b,c 是常数且 a0)特别 要注意 a0 的条件这是在做题过程中容易忽视的知识点在一般形式中 ax2 叫二次项,bx 叫一次项,c 是常数项其中 a,b,c 分别叫二次项系数,一次项 系数,常数项 【解答】解:方程 2x23=0 没有一次项,所以一次项系数是 0故选 C 【点评】要特别注意不含有一次项,因而一次项系数是 0,注意不要说是没有 2 (3 分)方程 x2=2x 的解是( ) Ax=0 Bx=2 Cx1=0,x2=2 Dx1=0,x2= 【考点】解一元二次方程-因式分解法;因式分解-提公因式法 【专
9、题】因式分解 【分析】 把右边的项移到左边, 用提公因式法因式分解, 可以求出方程的两个根 【解答】解:x22x=0 x(x2)=0 x1=0,x2=2 故选 C 【点评】本题考查的是用因式分解法解一元二次方程,把右边的项移到左边,用 提公因式法因式分解,可以求出方程的根 3 (3 分)方程 x24=0 的根是( ) Ax=2 Bx=2 Cx1=2,x2=2 Dx=4 【考点】解一元二次方程-直接开平方法 【分析】先移项,然后利用数的开方解答 【解答】解:移项得 x2=4,开方得 x=2, x1=2,x2=2 故选 C 【点评】 (1)用直接开方法求一元二次方程的解的类型有:x2=a(a0)
10、,ax2=b (a,b 同号且 a0) , (x+a)2=b(b0) ,a(x+b)2=c(a,c 同号且 a0) 法 则:要把方程化为“左平方,右常数,先把系数化为 1,再开平方取正负,分开 求得方程解”; (2)运用整体思想,会把被开方数看成整体; (3)用直接开方法求一元二次方程的解,要仔细观察方程的特点 4 (3 分)若一元二次方程 2x(kx4)x2+6=0 无实数根,则 k 的最小整数值 是( ) A1 B0 C1 D2 【考点】根的判别式;一元二次方程的定义 【分析】 先把方程变形为关于 x 的一元二次方程的一般形式:(2k1) x28x+6=0, 要方程无实数根,则=8246(
11、2k1)0,解不等式,并求出满足条件的 最小整数 k 【解答】解:方程变形为: (2k1)x28x+6=0, 当0,方程没有实数根,即=8246(2k1)0, 解得 k,则满足条件的最小整数 k 为 2 故选 D 【点评】本题考查了一元二次方程 ax2+bx+c=0(a0,a,b,c 为常数)根的判 别式当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数 根;当0,方程没有实数根 5(3 分) 用配方法解一元二次方程 x24x5=0 的过程中, 配方正确的是 ( ) A (x+2)2=1 B (x2)2=1 C (x+2)2=9 D (x2)2=9 【考点】解一元二次方程-配方法 【
12、分析】先移项,再方程两边都加上一次项系数一半的平方,即可得出答案 【解答】解:移项得:x24x=5, 配方得:x24x+22=5+22, (x2)2=9, 故选 D 【点评】本题考查了解一元二次方程,关键是能正确配方 6 (3 分)在一幅长 80cm,宽 50cm 的矩形风景画的四周镶一条金色纸边,做成 一幅矩形挂图,如图所示,如果要使整个挂图的面积是 5400cm2,设金色纸边的 宽为 xcm,那么 x 满足的方程是( ) Ax2+130 x1400=0 Bx2+65x350=0 Cx2130 x1400=0 Dx265x350=0 【考点】由实际问题抽象出一元二次方程 【专题】几何图形问题
13、 【分析】本题可设长为(80+2x) ,宽为(50+2x) ,再根据面积公式列出方程,化 简即可 【解答】解:依题意得: (80+2x) (50+2x)=5400, 即 4000+260 x+4x2=5400, 化简为:4x2+260 x1400=0, 即 x2+65x350=0 故选:B 【点评】 本题考查的是一元二次方程的运用,解此类题目要注意运用面积的公式 列出等式再进行化简 7 (3 分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积 是( ) A6 B8 C10 D12 【考点】勾股定理 【分析】设三边长分别为 x,x+1,x+2,根据勾股定理可得(x+2) 2=(x+
14、1)2+x2, 解方程可求得三角形的三边长,利用直角三角形的性质直接求得面积即可 【解答】解:设这三边长分别为 x,x+1,x+2, 根据勾股定理得: (x+2)2=(x+1)2+x2 解得:x=1(不合题意舍去) ,或 x=3, x+1=4,x+2=5, 则三边长是 3,4,5, 三角形的面积=4=6; 故选:A 【点评】 本题考查了勾股定理、 直角三角形面积的计算方法; 熟练掌握勾股定理, 由勾股定理得出方程是解决问题的关键 8 (3 分)方程 x29x+18=0 的两个根是等腰三角形的底和腰,则这个三角形的 周长为( ) A12 B12 或 15 C15 D不能确定 【考点】等腰三角形的
15、性质;解一元二次方程-因式分解法;三角形三边关系 【专题】分类讨论 【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨 论,从而得到其周长 【解答】解:解方程 x29x+18=0,得 x1=6,x2=3 当底为 6,腰为 3 时,由于 3+3=6,不符合三角形三边关系 等腰三角形的腰为 6,底为 3 周长为 6+6+3=15 故选 C 【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论 9(3 分) 若关于一元二次方程 x2+2x+k+2=0 的两个根相等, 则 k 的取值是 ( ) A1 B1 或1 C1 D2 【考点】根的判别式 【分析】根据判别式的意
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第2章 一元二次方程 2020年秋北师大版九年级上第2章 一元二次方程章末测试卷含答案解析 2020 北师大 九年级 一元 二次方程 测试 答案 解析
链接地址:https://www.77wenku.com/p-150909.html