2020年全国各地中考数学真题分类汇编知识点18:二次函数概念性质和图象代数方面的应用
《2020年全国各地中考数学真题分类汇编知识点18:二次函数概念性质和图象代数方面的应用》由会员分享,可在线阅读,更多相关《2020年全国各地中考数学真题分类汇编知识点18:二次函数概念性质和图象代数方面的应用(62页珍藏版)》请在七七文库上搜索。
1、 知识点知识点 18 二次函数概念、性质和图象、代数方面的应用二次函数概念、性质和图象、代数方面的应用 一、选择题一、选择题 9(2020 衢州) 二次函数 2 yx的图象平移后经过点(2, 0), 则下列平移方法正确的是 ( ) A向左平移 2 个单位,向下平移 2 个单位 B向左平移 1 个单位,向上平移 2 个单位 C向右平移 1 个单位,向下平移 1 个单位 D向右平移 2 个单位,向上平移 1 个单位 答案C 解析由于 A 选项平移后的解析式为 y=(x+2)2-2,当 x=2 时,y=14,所以它不经过(2,0) ; B 选项平移后的解析式为 y=(x+1)2+2,当 x=2 时,
2、y=7,所以它不经过(2,0) ;C 选项平移 后的解析式为 y=(x-1)2-1,当 x=2 时,y=0,所以它经过(2,0) ;D 选项平移后的解析式为 y=(x-2)2+1,当 x=2 时,y=1,它不经过(2,0) ,因此本题选 C. 6(2020 宿迁)将二次函数 y(x1)22 的图像向上平移 3 个单位,得到的图像对应的函 数表达式是( ) Ay(x2)22 By(x1)22 Cy(x1)21 Dy(x1)25 答案D解析将二次函数 y(x1)22 的图像向上平移 3 个单位,得到的图像对应的函数 表达式是 y(x1)223,即 y(x1)25,故选 D 9.(2020 宁波)如
3、图,二次函数 yax2bxc(a0)的图象与 x 轴交于 A,B 两点,与 y 轴正半 轴交于点 C,它的对称轴为直线 x1.则下列选项中正确的是 Aabc0 Cca0 D当xn22(n为实数)时,yc 答案D 解析本题考查了二次函数的图象和性质.抛物线开口向上,所以 a0, 二次函数图象的对称轴为 x1,所以2 b a1,所以 b2a0, 抛物线与 y 轴正半轴交于点 C,所以 c0,所以 abc0,A 错误;抛物 线与 x 轴有两个不同的交点,b24ac0, 4acb2 4ac A1 个 B2 个 C3 个 D4 个 x y -4-3-1 3 -2 O 答案C 解析本题考查二次函数的图象与
4、性质由 b a2 =2 得 4ab0,故正确;由 acb a 2 4 4 3 得 4acb212a,又 4ab,代入消去 b 得 c4a3,故错误; 由图,象得,关于 x 的方 程 ax2bxc2 有两个不相等实数根正确; 由 acb a 2 4 4 3 得 4acb212a,4ac12a b23bb2,a0,b0,c0,4ac2bb2 ,故正确故选 C 7(2020 常德)二次函数 = 2+ + ( 0)的图象如图所示,下列结论: 2 40bac ; 0abc ; 40ab ; 420abc 其中正确结论的个数是( ) A4 B3 C2 D1 答案 B解析本题考查了二次函数图像与系数的关系.
5、 抛物线与 x 轴有两个交点,方程 2 0axbxc有两个不相等的实数根, 2 40bac,故正确,由图象知,抛物线的对称轴为直线2x, 2 2 b a ,40ab ,故正确,由图象知,抛物线开口方向向下, 0a .40ab ,0b .抛物线与 y 轴的交点在 y 轴的正半轴上,0c . 0abc,故正确,由图象知,当2x时, 0y ,420ab c ,故错误. 综上所述,正确的结论有 3 个,因此本题选 B 10(2020安徽)如图,ABC和DEF都是边长为2的等边三角形,它们的边BC,EF在同一条 直线l上,点C,E重合,现将ABC沿直线l向右移动,直至点B与F重合时停止移动,在此过程 中
6、, 设点C移动的距离为x, 两个三角形重叠部分的面积为y, 则y随x变化的函数图象大致为 ( ) A . B. C. D. 答案A 解析如图1,当AC与DE有交点G时,则CEx,易知CEG是等边三角形,ySCEG l D F A C(E)B x y 42 3 O x y 24 3 O x y 3 42Ox y 24 3 O 1 2 x 3 2 x 3 4 x2(0 x2),该抛物线开口向上,对称轴为y轴;如图2,当AB与DF有交点 H时,则BFCE2(CEEF)CE2EF4x,易知BFH是等边三角形,ySBFH 1 2 (4x) 3 4 2 x 3 4 (4x)2,该抛物线开口向上,对称轴为y
7、.特殊地,当x2时,y 3,此时重叠部分的面积取最大值.综上所述,选项A符合. 图1图2 6 6(2020哈尔滨)将抛物线 2 xy 向上平移 3 个单位长度,再向右平移 5 个单位长度,所 得到的抛物线为( ) A A53 2 xy B B53 2 xy C C 35 2 xy D D35 2 xy 答案D解析本题考查了二次函数的图象与几何变换, 要求熟练掌握平移的规律: 左加右减, 上加下减,将抛物线 2 xy 向上平移3个单位长度,再向右平移5个单位长度,得到的抛物线 的解析式为 35 2 xy ,因此本题选D 9(2020绥化)将抛物线y2(x3) 22 向左平移 3 个单位长度,再向
8、下平移 2 个单位长 度,得到抛物线的解析式是( ) Ay2(x6) 2 By2(x6)24 Cy2x2 Dy2x24 答案C解析原抛物线的顶点是(3,2),平移后的顶点是(0,0),因此平移后所得抛物线的 解析式是 y2x2故选 C 12(2020 枣庄)如图,已知抛物线 yax2bxc 的对称轴为直线 x1给出下列结论: ac0;b24ac0;2ab0;abc0 其中,正确的结论有( ) A1 个 B2 个 C3 个 D4 个 答案C解析根据抛物线与系数 a,b,c 的关系特征判断各结论正确与否 抛物线开口向下,a0,抛物线交于 y 轴的正半轴,c0,ac0,故正确; 抛物线与 x 轴有两
9、个交点,b24ac0,故正确; 抛物线的对称轴为直线 x1, 1 2 b a ,b2a,2a+b0,故错误; 抛物线与 x 轴的两个交点关于对称轴对称, 则点 (3, 0) 关于直线 x1 的对称点为 (1, 0) , 即抛物线又经过点(1,0),即 x1 时,yabc0,故正确 G A B C D EF FE D C B A H O 1 y x 3 综上可知,正确的结论有,共 3 个 10 (2020 陕西)在平面直角坐标系中,将抛物线 yx2(m1)xm3 沿 y 轴向下平移 3 个单位,则平移后得到的抛物线顶点一定在( ) A第一象限 B第二象限 C第三象限 D第四象限 答案D解析平移后
10、的抛物线的表达式为 yx2(m1)xm3,通过配方求出该抛物线 的顶点坐标为 2 341, 24 mm ,由于 m1,所以 1 2 m 0, 23 1 2 x xx 0,所以平移 后的抛物线的顶点一点在第四象限 10 (2020 贵阳) (3 分)已知二次函数 yax2+bx+c 的图象经过(3,0)与(1,0)两点, 关于 x 的方程 ax2+bx+c+m0(m0)有两个根,其中一个根是 3则关于 x 的方程 ax2+bx+c+n0 (0nm)有两个整数根,这两个整数根是( ) A2 或 0 B4 或 2 C5 或 3 D6 或 4 答案 B解析解:二次函数 yax2+bx+c 的图象经过(
11、3,0)与(1,0)两点, 当 y0 时, 0ax2+bx+c 的两个根为3 和 1, 函数 yax2+bx+c 的对称轴是直线 x1, 又关于 x 的方程 ax2+bx+c+m0(m0)有两个根,其中一个根是 3 方程 ax2+bx+c+m0(m0)的另一个根为5,函数 yax2+bx+c 的图象开口向上, 关于 x 的方程 ax2+bx+c+n0 (0nm)有两个整数根,这两个整数根是4 或 2, 故选:B 10 (2020自贡)函数y= 与yax 2+bx+c的图象如图所示, 则函数ykxb的大致图象为 ( ) ABCD 答案 D 解析本题考查了反比例函数的图象与性质、二次函数的图象与性
12、质等知识,根据反比例函 数的图象位于一、三象限知 k0, 根据二次函数的图象确知 a0,b0,函数 ykxb 的大致图象经过一、二、三象限, 因此本题选 D 9 (2020泰安)在同一平面直角坐标系内,二次函数 yax 2bxb(a0)与一次函数 y axb 的图象可能是( ) A B C D 答案 C 解析本题考查了一次函数与二次函数的图像性质,选项 A 中 y=ax2+bx+c 的图像可知 a0、 b0,y=ax+b 的图像可知 a0、b0,则选项 A 不正确;选项 B 中 y=ax2+bx+c 的图像可知 a 0、b0,y=ax+b 的图像可知 a0、b0,则选项 B 不正确;选项 C
13、中 y=ax2+bx+c 的图像 可知 a0、b0,y=ax+b 的图像可知 a0、b0,则选项 C 正确;选项 D 中 y=ax2+bx+c 的 图像可知 a0、b0,y=ax+b 的图像可知 a0、b=0,则选项 D 不正确; ,因此本题选 C (2020四川甘孜州)10如图,二次函数 ya(x1) 2k 的图象与 x 轴交于 A (3,0), B 两点,下列说法错误的是( ) Aa0 B图象的对称轴为直线 x1 C点 B 的坐标为(1,0) D当 x0 时,y 随 x 的增大而增大 答案D 解析本题考查了二次函数的图象与系数 a、b、c 的关系抛物线开口向下,a0,故 A 正确;二次函数
14、 ya(x1) 2k 的顶点坐标为(1,k) ,图象的对称轴为直线 x1, 故 B 正确;由抛物线的对称性,得 B(2, 0) ,故 C 正确;由图象得,当 x1 时,y 随 x 的 增大而增大,当 x1 时,y 随 x 的增大而减小,故 D 错;综上此题选 D 10 (2020福建)10.已知 111 ,P x y, 222 ,P x y是抛物线 2 2yaxax上的点,下列命题正确 的是( ) A.若 12 |1| |1| xx,则 12 yy B.若 12 |1| |1| xx,则 12 yy C.若 12 |1| |1| xx,则 12 yy D.若 12 yy,则 12 xx 答案C
15、 解析本题考查了二次函数的图象和性质, 2 2yaxax=a(x-1)2-a,抛物线的对称轴 为 x=1,根据二次函数的对称性知若 12 |1| |1| xx,则 12 yy,因此本题选 C 10(2020 襄阳)二次函数 yax2bxc 的图象如图所示,下列结论:ac0;3ac 0;4acb20;当 x1 时,y 随着 x 的增大而减小其中正确的有( ) A4 个 B3 个 C2 个 D1 个 答案B 解析(1)由抛物线开口向上且与 y 轴的负半轴相交,得 a0,c0,从而 ac0,于是 正确; (2)由抛物线的对称轴为 x1,得 2 b a 1,于是 b2a由抛物线过点(1,0), 得 a
16、bc0,于是 a(2a)c0,即 3ac0,从而正确; (3)由抛物线与 x 轴有 两个不同的交点,得 b24ac0,从而 4acb20,于是正确; (4)由图可知,当1x 1 时,y 随着 x 的增大而减小,当 x1 时,y 随着 x 的增大而增大,于是错误综上,结 论正确的有 3 个,故选 B (2020南充)10.关于二次函数 )0(54 2 aaxaxy 的三个结论:对任意实数 m,都有 mx2 1 与 mx2 2 对应的函数值相等;若 3x4,对应的 y 的整数值有 4 个,则 1 3 4 a 或 3 4 1 a ;若抛物线与 x 轴交于不同两点 A,B,且 AB6,则 4 5 a
17、或 1a . 其中正确的结论是( ) A. B. C. D. 答案D 解析二次函数yax 24ax5 的对称轴为直线 x 4 2 2 a a , x12+m与x22m关 于直线x2 对称,对任意实数m,都有x12+m与x22m对应的函数值相等,所以 正确; 因为二次函数在3x4上y随x的增大而增大, 或增大而减小, 而且x=3时y=-3a-5, x=4 时 y=-5,所以 y 要有 4 个整式值, 则-9-3a-5-8,或-2-3a-5-1, 所以 1 3 4 a 或 3 4 1 a , 故正确;因为 AB 6,则 21 2 12 2 1212 4)()x-(x|x-x|xxxx= 2 ( 5
18、)20 44166 aa ,则 4 5 a 或 1a .所以正确.故选 D. 10 (2020齐齐哈尔)如图,抛物线 yax2+bx+c(a0)与 x 轴交于点(4,0) ,其对称轴 为直线 xl,结合图象给出下列结论: ac0; 4a2b+c0; 当 x2 时,y 随 x 的增大而增大; 关于 x 的一元二次方程 ax2+bx+c0 有两个不相等的实数根 其中正确的结论有( ) 第 10 题图 1-1 O y x A1 个 B2 个 C3 个 D4 个 答案 C 解析根据抛物线的开口方向、对称轴、顶点坐标、增减性以及与 x 轴 y 轴的交点,综合判断 即可抛物线开口向上,因此 a0,与 y
19、轴交于负半轴,因此 c0,故 ac0,所以正 确; 抛物线对称轴为 x1,与 x 轴的一个交点为(4,0) ,则另一个交点为(2,0) ,于是有 4a2b+c0,所以不正确; x1 时,y 随 x 的增大而增大,所以正确; 抛物线与 x 轴有两个不同交点,因此关于 x 的一元二次方程 ax2+bx+c0 有两个不相等的 实数根,所以正确; 综上所述,正确的结论有:, 故选:C (2020德州)11.二次函数 2 yaxbxc的部分图象如图所示,则下列选项错误的是 A. 若(-2,y1),(5,y2)是图象上两点,则 y1y2 B. 30ac C. 方程 2 2axbxc 有两个不相等的实数根
20、D. 当0 x时,y 随 x 的增大而减小 答案D 解析抛物线 2 yaxbxc的对称轴是 x=1,所以 x=-2 与 x=4 时的函数值相等,所以若 (-2,y1),(5,y2)是图象上两点,则 y1y2本选项正确; 对称轴x1,b2a. 由函数的图象知:当x1 时,y=0;即ab+c=0, a+2a+c=0,即 3a+c=0,故本选项正确; 抛物线 2 yaxbxc与直线 y=-2 有两个不同的交点,所以 方程 2 2axbxc 有两个不 相等的实数根,故本选项正确; 抛物线在对称轴x1 的左侧或左侧,y 随着 x 的增大而增大(或减小) ,故本选项错误. 8 (2020 岳阳)对于一个函
21、数,自变量x取c时,函数值y等于 0,则称c为这个函数的零 点. 若关于x的二次函数010 2 mmxxy有两个不相等的零点 212 , 1 xxxx, 关于x的 方程0210 2 mxx有两个不相等的非零实数根 434 , 3 xxxx,则下列关系式一定正确的 是( ) A 1 3 1 0 x x B1 3 1 x x C1 4 2 0 x x D1 4 2 x x 答案A 解析关于x的方程0210 2 mxx可变形为0210 2 mxx,关于x的 方程0210 2 mxx有两个不相等的非零实数根 4343, xxxx,二次函数 0210 2 mmxxy有 两 个 不 相 等 的 零 点 4
22、343, xxxx, 二 次 函 数 0210 2 mmxxy的图象由010 2 mmxxy的图象向上平移两个单位 而得对称轴都为直线5 2 10 2 a b x,画出草图,由图可知:0 13 xx,两 边都除以 3 x得,10 3 1 x x ,故选 A 8.(2020湖北孝感)将抛物线C1:y=x2-2x+3 向左平移 1 个单位长度,得到抛物线C2,抛 物线C2与抛物线C3关于 x 轴对称,则抛物线C3的解析式为( ) A.y=-x2-2 B.y=-x2+2 C.y=x2-2 D.y=x2+2 答案A 解析利用平移得性质 “上加下减, 左加右减” 得抛物线C2得解析式: y=(x + 1
23、)2-2(x+1)+3, 整理得 y=x2+2, 再利用关于 x 轴对称的性质 “横坐标不变, 纵坐标互为相反数” 得: y=-x2-2. 故选 A. 9.(2020达州)如图,直线 y1=kx 与抛物线 y2=ax2+bx+c 交于 A、B 两点,则 y= ax2+(b-k) x+c 的图象可能是( ) 答案B 解析由直线 y1=kx 与抛物线 y2=ax2+bx+c 的图象可知 k0,a0,b0,c0,b24ac0, 所以 bk0, (b-k) 24ac= b22bkk24ac0,即 y= ax2+(b-k)x+c 的图象开口向下, 对称轴在 y 轴的左侧且与 x 轴有两个交点 8(202
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 全国各地 中考 数学 分类 汇编 知识点 18 二次 函数 概念 性质 图象 代数 方面 应用
文档标签
- 全国各地
- 知识点19二次函数代数方面的应用2019中考真题分类汇编
- 2020年全国各地中考数学真题分类汇编知识点31圆的基本性质
- 2020年全国各地中考数学真题分类汇编知识点50方案设计题
- 2020年全国各地中考数学真题分类汇编知识点46几何最值
- 2020年全国各地中考数学真题分类汇编知识点51数学文化
- 2020年全国各地中考数学真题分类汇编知识点08分式
- 2020年全国各地中考数学真题分类汇编知识点43尺规作图
- 2020年全国各地中考数学真题分类汇编知识点05因式分解
- 2020年全国各地中考数学真题分类汇编知识点52函数性质研究
- 2020年全国各地中考数学真题分类汇编知识点40数据的分析
- 2019全国中考数学真题分类汇编二次函数代数方面的应用
- 2020年全国各地中考数学真题分类汇编知识点04整式
- 人教版二次函数知识点
- 二次函数河南中考真题汇编
- 函数和代数
- 二次函数和代数
- 图象信息题分类
链接地址:https://www.77wenku.com/p-151238.html