2020年全国各地中考数学真题分类汇编知识点35:解直角三角形及其应用
《2020年全国各地中考数学真题分类汇编知识点35:解直角三角形及其应用》由会员分享,可在线阅读,更多相关《2020年全国各地中考数学真题分类汇编知识点35:解直角三角形及其应用(68页珍藏版)》请在七七文库上搜索。
1、知识点知识点 35 解直角三角形及其应用解直角三角形及其应用 一、选择题一、选择题 8(2020 温州)如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为, 测倾仪高AD为1.5米,则铁塔的高BC为 A(1.5150tan)米 B(1.5 150 tan )米 C(1.5150sin)米 D(1.5 150 sin )米 答案A 解析本题考查了解直角三角形的应用, 过点A作AEBC, 垂足为E, 由题意 AECD150, 在Rt ABE中,tan 150 BEBE AE , 150tanBE ,BCBECE1.5150tan,因此本题 选A 7 (2020 黔西南州) 如图, 某停车场入口
2、的栏杆 AB, 从水平位置绕点 O旋转到 AB的位置, 已知 AO 的长为 4 米若栏杆的旋转角AOA,则栏杆 A 端升高的高度为( ) A 4 sin 米 B4sin米 C 4 cos 米 D4cos米 答案B 解析本题考查了锐角三角函数的应用如答图,过点 A作 ACAB 于点 C在 Rt OCA中,sin A C A O ,所以 ACAOsin由题意得 AOAO4,所以 AC 4sin,因此本题选 B 8(2020安徽)如图,在RtABC中,C90,点D在AC上,DBCA,若AC4, cosA4 5 ,则BD的长度为( ) 150米 D C B A A B C D 150米 E D C B
3、A A9 4 B12 5 C15 4 D4答案C 解析在RtABC中,cosA AC AB 4 5 ,则AB 5 4 AC5,BC 22 ABAC 3.在RtBCD 中,cosDBC BC BD 4 5 ,cosDBCcosA,BD 5 4 BC 5 4 3 15 4 . 9 (2020重庆A卷)如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡, 山坡的CD坡度(或坡比) i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点 处测得居民楼楼顶A点的仰角为28,居民楼AB与山坡CD的剖面在同一平面内,则居民楼 AB的高度约为( ) (参考数据:sin280.4
4、7,cos280.88,tan280.53) A76.9m B82.1m C94.8m D112.6m 答案B解析如图,过点D作DEAB于E,作DFBC交BC的延长线于点F,则四边形DFBF是矩 形.在RtDCF中,CD的坡度为1:0.75, 4 = 3 DF CF .设DF=4k,CF=3k,则CD=5k.CD=45, k=9,DF=36,CF=27,BE=36,DE=BF=27+60=87.在RtADE中, AE=DEtanADQ=87 0.53=46.11,AB=46.11+3682.1(m) 7.(2020苏州)如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:(1) 在点C
5、处放置测角仪, 测得旗杆顶的仰角ACE; (2)量得测角仪的高度CDa; (3) 量得测角仪到旗杆的水平距离DBb.利用锐角三角函数解直角三角形的知识,旗杆的高度 可表示为( ) A.tanab B.sina b C. tan b a D. sin b a 答案A解析本题考查了利用三角函数计算物体高度,作CFAB于F,由题意得CF=DB=b, tanACF=AF:CF,AF=tanACFCF= tanb, AB=AF+FB=AF+CD=tanab ,因此本题选 A. 12(2020聊城)如图,在 RtABC中,AB2,C30,将 RtABC绕点A 转得到 RtABC,使点B的对应点B落在AC上
6、,在BC上取点D,使BD2,那么,点 F D到BC的距离等于( ) A2( 3 3 1) B 3 3 1 C31 D31 答案D解析本题可直接通过解直角三角形解答如图,设 DEBC 于点 E,交 AC 于点 F, 则BDFC30,DF2BF在 RtBDF 中,设 BFx,根据勾股定理, 得 x222(2x)2, 解得 x 3 32 , DF 3 34 由旋转知 ABAB2 在 RtABC 中, C30,AC2AB4,BC422,CFBCBF2 3 32 ,EF 2 1 CF1 3 3 DEDFEF 3 34 1 3 3 31 9 (2020重庆 B 卷)如图垂直于水平面的 5G 信号塔 建在垂
7、直与水平面的悬崖边 B 点处, 某测量员从山脚 C 点出发沿水平方向前行 78 米到 D 点(点 A,B,C 在同一条直线上) ,再沿 斜坡 DE 方向前行 78 米到 E 点(点 A,B,C,D,E 在同一平面内) ,在点 E 处测得 5G 信号塔顶 端 A 的仰角为 43,悬崖 BC 的高为 144.5 米,斜坡的坡度(或坡比)i=1:2.4,则信号塔 AB 的高度约为( ) (参考数据:sin430.68,cos430.73,tan430.93) A23 米 B24 米 C24.5 米 D25 米 答案D 解析本题考查了锐角三角函数的实际应用,如图,过点 E 作 EFAC 于 E,作 E
8、GCD 交 CD的延长线于点G, 则四边形EFCG是矩形.在RtDEG中, DE的坡度为1:2.4, 5 12 EG DG . 设 EG=5k , DG=12k , 则 DE=13k. DE=78 , k=6 , EG=30,DG=72 , CF=30 , EF=CG=72+78=150. 在Rt AEF中 , AF=EF tan AEF=150 0.93=139.5 , AC=139.5+30=169.5(m) ,AB=169.5-144.5=25(m) ,因此本题选 D A B C D B C E A B C D B C F 8(2020天水)如图所示,某校数学兴趣小组利用标杆 BE 测量
9、建筑物的高度,已知标 杆 BE 高 1.5m,测得 AB1.2m,BC12.8m,则建筑物 CD 的高是( ) A17.5m B17m C16.5m D18m 答案A 解析由题意得 EBAC, DCAC, 从而 EBDC, 所以AEBADC, 从而得到BE CD AB AC, 即1.5 CD 1.2 1.212.8,解得 CD17.5(cm) 因此本题选 A 10 (2020深圳)如图,为了测量一条河流的宽度,一测量员在河岸边相距 200 米的 P、 Q 两点分别测定对岸一棵树 T 的位置,T 在 P 的正北方向,且 T 在 Q 的北偏东 70 方向,则 河宽(PT 的长)可以表示为( ) A
10、200tan70 米 B 200 tan70 米 C200sin70 米 D 200 sin70 米 答案B 解析在 RtPQT 中,利用PQT 的度数,得到PTQ 的度数,进而由 PQ 的长根据三角 函数即可求得 PT 的长在 RtPQT 中,QPT90 ,PQT90 70 20 ,PTQ 70 ,tan70 PQ PT,PT PQ tan70 200 tan70 ,即河宽 200 tan70 米,此本题选 B 6 (2020长沙)从一艘船上测得海岸上高为 42 米的灯塔顶部的仰角是 30 度,船离灯塔 的水平距离为 ( ) A342米 B314米 C21 米 D42 米 答案A 解析本题考
11、查了三角函数的应用仰俯角问题,如图水平距离42tan3042 3 3 342,因此本题选 A 二、填空题二、填空题 16(2020 温州)如图,在河对岸有一矩形场地ABCD,为了估测 场地大小,在笔直的河岸l上依次取点E,F,N,使AEl, BFl,点N,A,B在同一直线上在F点观测A点后,沿FN 方向走到M点, 观测C点发现12 测得EF15米, FM 2米, MN8米, ANE45 , 则场地的边AB为 米, BC为 米 答案15 2,202 解析本题考查了解直角三角形, 根据题意可知EN15+2+825,又 ANE45 ,得到AN25 2,AE25.又因为FN10,所以BN 10 2,所
12、以ABANBN152;延长CB交l于点Q,显然 BQF BNF,QFBF10,BQ10 2,在Rt CPQ中,PQCP,由1 2,所以tan1 255 = 153102 CPCP PMCP ,所以CP30,所以CQ 30 2,所以BC202. 因此本题答案为15 2,202 14 (2020黔西南州)如图,在 Rt ABC 中,C90 ,点 D 在线段 BC 上,且B30 , ADC60 ,BC3 3,则 BD 的长度为_ 答案2 3 解析本题考查了解直角三角形,含 30角的直角三角形的性质(在直角三角形中,30 角所对的直角边等于斜边的一半) 因为C90,ADC60,所以DAC30, 所以
13、CD 1 2 AD因为B30,ADC60,所以BAD30,所以 BDAD,所 以 BD2CD因为 BC3 3,所以 CD2CD3 3,所以 CD3,所以 DB2 3,因 此本题答案为2 3 15 (2020新疆)如图,在ABC 中,A90 ,B60 ,AB2,若 D 是 BC 上一动 点,则 2ADDC 的最小值为_ 答案6 解析本题考查了含 30的直角三角形,垂线段最短如答图,作 BCE30, CE 与 AC 在 BC 两侧, 过点 D 作 DFCE 于 F 过点 A 作 AHCE 于点 H 在 42米 30 l 2 1 NMF E D C B A A B C D E F M N 1 2 l
14、 PQ C D E F A B H RtCDF 中,因为BCE30,所以 DF 1 2CD,则由“垂线段最短”可知,ADDF 的 最小值为线段 AH 的长,即 AD 1 2CD 的最小值为线段 AH 的长在 RtABC,因为B 60,所以ACB30,因为 AB2,所以 BC4,AC2 3在 RtACH 中, ACHACBBCE303060,所以CAH30,所以 CH 1 2AC 1 2 2 33, AH3CH333, 所以 AD 1 2CD 的最小值为 3, 因为 2ADDC2(AD 1 2CD),所以 2ADDC 的最小值为 6 16(2020 枣庄)人字梯为现代家庭常用的工具(如图)若 A
15、B,AC 的长都为 2m,当 50 时, 人字梯顶端离地面的高度 AD 是_m(结果精确到 0.1m, 参考依据: sin500.77, cos500.64,tan501.19) 答案1.5解析直接利用正弦求解在 Rt ADC 中,AC2,50 , 则 sin50 AC AD ,ADAC sin50 20.771.5 16 (2020 自贡)如图, 我市在建高铁的某段路基横断面为梯形 ABCD, DCAB BC 长 6 米, 坡角 为 45 ,AD 的坡角 为 30 ,则 AD 长为 米(结果保留根号) 答案故答案为:6 解析本题考查了解直角三角形的知识,通过构造直角三角形,解直角三角形,从而
16、解决问 题 解:过点 D 作 DEAB 于 E,过点 C 作 CFAB 于 F CDAB, DEAB, CFAB, DECF,在 Rt CFB 中, CFBCsin453 (米) , DECF3 (米) , 在 Rt ADE 中, A30 , AED90 , AD2DE6 (米) , 因此本题答案为:6 15 (2020泰安)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地BCAD, BEAD,斜坡 AB 长 26m,斜坡 AB 的坡比为 12:5为了减缓坡面,防止山体滑坡,学校 决定对该斜坡进行改造经地质人员勘测,当坡角不超过 50时,可确保山体不滑坡,如 果改造时保持坡脚 A 不动,则
17、坡顶 B 沿 BC 至少向右移_m 时,才能确保山体不 滑坡 (取 tan501.2) 答案10 解析本题考查了锐角三角函数的应用,因为斜坡 AB 的坡比为 12:5,即 BE:AE=12:5设 BE=12k,则 AE=5k,AB=13k.因为斜坡 AB 长 26m,所以 13k=26,所以 k=2,即:BE=24 m, 则 AE=10 m,设坡顶 B 沿 BC 至少向右移至点 G 处,过点 G 作 GHAD,垂足为点 H,且设 BG=x,则 GH:AHtan50,即 24:AH1.2,所以 AH20,因为 AE=10,所以 EH10,即 坡顶 B 沿 BC 至少向右移 10 m 时,才能确保
18、山体不滑坡 ,因此本题答案为 10 13 (2020 乐山) 如图是某商场营业大厅自动扶梯示意图 自动扶梯 AB 的倾斜角为 30 , 在自动扶梯下方地面 C 处测得扶梯顶端 B 的仰角为 60 ,A、C 之间的距离为 4m,则自动扶 梯的垂直高度 BD_m(结果保留根号) 答案2 3 解析先由三角形外角的性质及等腰三角形的判定, 得到 BCAC4, 再解直角三角形 BCD 求 BD BACABCBCD60 , BAC30 , ABC30 , ABCBAC, BCAC4,在 RtBCD 中,BDBCsin60 4 3 2 2 3 15(2020乐山)把两个含 30 角的直角三角板按如图所示拼接
19、在一起,点 E 为 AD 的中 点,连接 BE 交 AC 于点 F,则AF AC_ 答案3 5 解析连接 CE,根据直角三角形斜边上中线的性质,得到 CE1 2ADAE,从而ECA CAEBAC,从而 CEAB,所以ABFCEF,因而AF CF AB CE;设 AC2x,则 AB ACcos30 3x, AD AC cos30 4 3 3 x, 从而 CE2 3 3 x, 因此AF CF AB CE 3 2, 进而求得 AF AC 3 5 A BC DEA B C D E H G (第 15 题) (2020济宁)14.如图,小明在距离地面 30 米的 P 处测得 A 处的俯角为 15, B
20、处的俯 角为 60.若斜面坡度为 1:3,则斜坡 AB 的长是_米. 答案20 3 解析由题意得:APB=60-15=45,PH=30, 在 P 处测得 B 处的俯角为 60,PBH=60, 又斜面 AB 坡度为 1:3, 13 tan 33 ABC, ABC=30,ABP=90, ABP 是等腰直角三角形,AB=PB. 由 sinPBH= 30PH PBPB ,PB= 3030 =20 3 sin3 2 PBH, AB=20 3(米). 13.(2020达州)小明为测量校园里一颗大树 AB 的高度,在树底部 B 所在的水平面内,将 测角仪 CD 竖直放在与 B 相距 8m 的位置, 在 D
21、处测得树顶 A 的仰角为 52 .若测角仪的高度 是 1m,则大树 AB 的高度约为 .(结果精确到 1m.参考数据:sin52 0.78,cos52 0.61,tan52 1.28) 答案11 米 解析AB=18tan52=181.28=11.2411(米) 16 (2020南通)测高仪 CD 距离建筑物 AB 底部 5 m,测高仪 D 处观测建筑物顶端的仰 角为 50 , 测高仪高度为 1.5 m, 则建筑物 AB 的高度为 m(精确到 0.1m, sin50 0.77, cos50 0.64,tan50 1.19) 答案7.5 解析过点 D 作 AB 的垂线,得矩形 BCDE 和 RtA
22、ED,可得 BE,DE 的长,在 RtAED 中 求出 AE 的长,求出 ABAEBE 过点 D 作 DEAB 于点 E, 由题意可得:BEDC1.5m,DEBC5m, 在 RtAED 中,tan AE ADE DE , 5tan505 1.195.95AE , ABAEBE1.55.957.5(m) 14(2020 咸宁)如图,海上有一灯塔P,位于小岛A北偏东60 方向上,一艘轮船从北小岛 A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30 方向上,如果轮船不改 变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是_ n mile(结果保留一位小数,31
23、.73) 答案20.8 50 D A CB E D C A B A B C D 5 50 解析本题考查了解直角三角形的应用,如图,过P作PDAB于D,AB=24, PAB=90 -60 =30 , PBD=90 -30 =60 , BPD=30 , APB=30 , 即PAB=APB, AB=BP=24,在直角 PBD中,PD=BPsinPBD=24 3 2 =12 320.8,因此本题填20.8 13 (2020天门仙桃潜江)如图,海中有个小岛 A,一艘轮船由西向东航行,在点 B 处 测得小岛 A 位于它的东北方向, 此时轮船与小岛相距 20 海里, 继续航行至点 D 处, 测得小岛 A 在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 全国各地 中考 数学 分类 汇编 知识点 35 直角三角形 及其 应用
链接地址:https://www.77wenku.com/p-151349.html