1.1.1(第1课时)空间向量及其线性运算 学案(含答案)2020年秋人教A版(新教材)选择性必修第一册
《1.1.1(第1课时)空间向量及其线性运算 学案(含答案)2020年秋人教A版(新教材)选择性必修第一册》由会员分享,可在线阅读,更多相关《1.1.1(第1课时)空间向量及其线性运算 学案(含答案)2020年秋人教A版(新教材)选择性必修第一册(7页珍藏版)》请在七七文库上搜索。
1、1 11.11.1 空间向量及其线性运算空间向量及其线性运算 第第 1 1 课时课时 空间向量及其线性运算空间向量及其线性运算 学习目标 1.理解空间向量的有关概念.2.类比平面向量,会用平行四边形法则、三角形法则 作出向量的和与差.3.理解向量运算的交换律、结合律和分配律 知识点一 空间向量的概念 1定义:在空间,具有大小和方向的量叫做空间向量 2长度或模:向量的大小 3表示方法: 几何表示法:空间向量用有向线段表示; 字母表示法:用字母 a,b,c,表示;若向量 a 的起点是 A,终点是 B,也可记作AB , 其模记为|a|或|AB |. 4几类特殊的空间向量 名称 定义及表示 零向量 长
2、度为 0 的向量叫做零向量,记为 0 单位向量 模为 1 的向量称为单位向量 相反向量 与向量 a 长度相等而方向相反的向量, 称为 a 的相反向量, 记为 a 共线向量 (平行向量) 如果表示若干空间向量的有向线段所在的直线互相平行或重合, 那么 这些向量叫做共线向量或平行向量 规定: 对于任意向量 a, 都有 0a 相等向量 方向相同且模相等的向量称为相等向量 思考 空间中的两个向量是不是共面向量? 答案 是, 空间中的任意两个向量都可以平移到同一个平面内, 成为同一平面内的两个向量 知识点二 空间向量的线性运算 空间向 量的线 加法 abOA AB OB 减法 abOA OC CA 性运
3、算 数乘 当 0 时,aOA PQ ; 当 0 时,aOA MN ; 当 0 时,a0 运算律 交换律:abba; 结合律:a(bc)(ab)c,(a)()a; 分配律:()aaa,(ab)ab. 思考 1 怎样作图表示三个向量的和,作出的和向量是否与相加的顺序有关? 答案 可以利用三角形法则和平行四边形法则作出三个向量的和加法运算是对有限个向量 求和,交换相加向量的顺序,其和不变 思考 2 由数乘 a0,可否得出 0? 答案 不能a00 或 a0. 1两个有公共终点的向量,一定是共线向量( ) 2在空间中,任意一个向量都可以进行平移( ) 3空间两非零向量相加时,一定可以用平行四边形法则运算
4、( ) 4向量AB 与AC是共线向量,则 A,B,C 三点必在一条直线上( ) 一、向量概念的应用 例 1 (1)下列关于空间向量的说法中正确的是( ) A方向相反的两个向量是相反向量 B空间中任意两个单位向量必相等 C若向量AB ,CD 满足|AB |CD |,则AB CD D相等向量其方向必相同 答案 D 解析 A 中,方向相反,长度相等的两个向量是相反向量;B 中,单位向量模都相等而方向 不确定;C 中,向量作为矢量不能比较大小,故选 D. (2)(多选)下列说法中正确的是( ) A若|a|b|,则 a,b 的长度相同,方向相同或相反 B若向量 a 是向量 b 的相反向量,则|a|b|
5、C空间向量的加法满足结合律 D任一向量与它的相反向量不相等 答案 BC 解析 |a|b|,说明 a 与 b 模相等,但方向不确定;对于 a 的相反向量 ba,故|a|b|, 从而 B 正确;空间向量的加法满足结合律,C 正确;零向量的相反向量仍是零向量故选 BC. 反思感悟 空间向量的概念问题 在空间中,向量、向量的模、相等向量的概念和平面中向量的相关概念完全一致,两向量相 等的充要条件是两个向量的方向相同、 模相等 两向量互为相反向量的充要条件是大小相等, 方向相反 跟踪训练 1 下列关于空间向量的命题中,正确的命题的序号是_ 长度相等、方向相同的两个向量是相等向量; 平行且模相等的两个向量
6、是相等向量; 若 ab,则|a|b|; 两个向量相等,则它们的起点与终点相同 答案 解析 根据向量的定义,知长度相等、方向相同的两个向量是相等向量,正确;平行且模 相等的两个向量可能是相等向量, 也可能是相反向量, 不正确; 当 ab 时, 也有|a|b|, 不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点和终点无关, 不正确综上可知只有正确 二、空间向量的加减运算 例 2 如图,已知长方体 ABCDABCD,化简下列向量表达式,并在图中标出化简 结果的向量 (1)AA CB ; (2)AA AB BC. 解 (1)AA CB AA DA AA AD AA AD AD . (2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.1
链接地址:https://www.77wenku.com/p-152186.html