1.1平面直角坐标系ppt课件
《1.1平面直角坐标系ppt课件》由会员分享,可在线阅读,更多相关《1.1平面直角坐标系ppt课件(36页珍藏版)》请在七七文库上搜索。
1、一平面直角坐标系,第一讲坐标系,学习目标 1.了解平面直角坐标系的组成,领会坐标法的应用. 2.理解平面直角坐标系中的伸缩变换. 3.能够建立适当的平面直角坐标系,运用解析法解决数学问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一平面直角坐标系,答案直角坐标系; 在平面直角坐标系中,第一象限内的点的横纵坐标均为正,第二象限内的点的横坐标为负,纵坐标为正,第三象限内的点的横纵坐标均为负,第四象限内的点的横坐标为正,纵坐标为负.,思考1在平面中,你最常用的是哪种坐标系?坐标的符号有什么特点?,答案建立平面直角坐标系; 通常选图形的特殊点为坐标原点,边所在直线为坐标轴.比如,对称中
2、心为图形的顶点,为原点,对称轴边所在直线为坐标轴.,思考2坐标法解问题的关键是什么?如何建立恰当的坐标系?,梳理(1)平面直角坐标系的概念 定义:在同一个平面上相互垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系. 相关概念: 数轴的正方向:水平放置的数轴 的方向、竖直放置的数轴 的方向分别是数轴的正方向. x轴或横轴:坐标轴 的数轴. y轴或纵轴:坐标轴 的数轴. 坐标原点:坐标轴的 . 对应关系:平面直角坐标系内的点与 之间一一对应.,向右,水平,向上,竖直,公共点O,有序实数对(x,y),(2)坐标法解决几何问题的“三部曲”:第一步,建立适当坐标系,用坐标和方程表示问题中涉及
3、的 元素,将几何问题转化为 问题;第二步,通过代数运算解决代数问题;第三步:把代数运算结果翻译成 _结论.,几何,代数,几何,思考1如何由ysin x的图象得到y3sin 2x的图象?,知识点二平面直角坐标系中的伸缩变换,思考2伸缩变换一定会改变点的坐标和位置吗?,答案不一定,伸缩变换对原点的位置没有影响.但是会改变除原点外的点的坐标和位置,但是象限内的点伸缩变换后仍在原来的象限.,梳理平面直角坐标系中伸缩变换的定义 (1)平面直角坐标系中方程表示图形,那么平面图形的伸缩变换就可归结为 _伸缩变换,这就是用 研究 变换. (2)平面直角坐标系中的坐标伸缩变换:设点P(x,y)是平面直角坐标系中
4、任,坐标的,代数方法,几何,题型探究,命题角度1研究几何问题 例1已知ABC中,ABAC,BD,CE分别为两腰上的高,求证:BDCE.,类型一坐标法的应用,证明,证明如图,以BC所在直线为x轴,BC的垂直平分线为y轴建立平面直角坐标系. 设B(a,0),C(a,0),A(0,h).,|BD|CE|,即BDCE.,反思与感悟根据图形的几何特点选择适当的直角坐标系的一些规则:如果图形有对称中心,选对称中心为原点;如果图形有对称轴,可以选对称轴为坐标轴;使图形上的特殊点尽可能多地在坐标轴上.,跟踪训练1在ABCD中,求证:|AC|2|BD|22(|AB|2|AD|2).,由对称性知D(ba,c),
5、所以|AB|2a2,|AD|2(ba)2c2, |AC|2b2c2,|BD|2(b2a)2c2, |AC|2|BD|24a22b22c24ab2(2a2b2c22ab), |AB|2|AD|22a2b2c22ab, 所以|AC|2|BD|22(|AB|2|AD|2).,证明如图,以A为坐标原点,AB所在的直线为x轴,建立平面直角坐标系.,证明,命题角度2求轨迹方程 例2如图,圆O1与圆O2的半径都是1,| O1O2|4,过动点P分别作圆O1,圆O2的切线PM,PN(M,N分别为切点),使得|PM| |PN|,试建立适当的坐标系,并求动点P的轨迹方程.,解答,解如图,以直线O1O2为x轴,线段O
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.1 平面 直角 坐标系 ppt 课件
链接地址:https://www.77wenku.com/p-152328.html