13.3.2 等边三角形ppt课件(共66张ppt)
《13.3.2 等边三角形ppt课件(共66张ppt)》由会员分享,可在线阅读,更多相关《13.3.2 等边三角形ppt课件(共66张ppt)(66页珍藏版)》请在七七文库上搜索。
1、13.3 等腰三角形 13.3.2 等边三角形,第一课时,第二课时,第一课时,等边三角形的性质和判定,下列图片中有你熟悉的数学图形吗?你能说出此图形的名称吗?,1.掌握等边三角形的定义,等边三角形与等腰三角形的关系.,2.探索等边三角形的性质和判定,3.能运用等边三角形的性质和判定进行计算和证明,小明想制作一个三角形的相框,他有四根木条,长度分别为10cm,10cm,10cm,6cm,你能帮他设计出几种形状的三角形?,等边三角形的性质,等腰三角形,等边三角形,一般三角形,在等腰三角形中,有一种特殊的情况,就是底与腰相等,即三角形的三边相等,我们把三条边都相等的三角形叫做等边三角形.,等边对等角
2、,三线合一,等角对等边,两边相等,两腰相等,轴对称图形,A,B,C,有两条边相等的三角形叫做等腰三角形,等边三角形的三个内角之间有什么关系?,等腰三角形,AB=AC,B=C,等边三角形,AB=AC=BC,AB=AC,B=C,AC=BC,A=B,A=B=C,=60,问题1:,结论:等边三角形的三个内角都相等,并且每一个角都等于60.,已知:AB=AC=BC , 求证:A= B=C= 60.,证明: AB=AC. B=C .(等边对等角) 同理 A=C . A=B=C. A+B+C=180, A= B= C=60 .,等边三角形有“三线合一”的性质吗?等边三角形有几条对称轴?,结论:等边三角形每条
3、边上的中线、高和所对角的平分线都“三线合一”.,顶角的平分线、底边的高 底边的中线 三线合一,一条对称轴,三条对称轴,问题2:,每条边上的中线、高和这条边所对的角的平分线互相重合,三个角都相等,,对称轴(3条),等边三角形,对称轴(1条),两个底角相等,底边上的中线、高和顶角的平分线互相重合,且都是60,两条边相等,三条边都相等,归纳总结,例1 如图,ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE,若ABE40,BEDE,求CED的度数,解:ABC是等边三角形, ABCACB60. ABE40, EBCABCABE60 4020. BEDE, DEBC20, CEDA
4、CBD40.,等边三角形的性质应用,解决与等边三角形有关的计算问题,关键是注意“每个内角都是60”这一隐含条件,一般需结合“等边对等角”、三角形的内角和与外角的性质解答.,1.如图,ABC是等边三角形,BD平分ABC,延长BC到E,使得CE=CD求证:BD=DE,证明:ABC是等边三角形,BD是角平分线, ABC=ACB=60,DBC=30 又CE=CD, CDE=CED 又BCD=CDE+CED, CDE=CED=30 DBC=DEC DB=DE(等角对等边),例2 ABC为等边三角形,点M是BC边上任意一点,点N是CA边上任意一点,且BMCN,BN与AM相交于Q点,BQM等于多少度?,解:
5、ABC为等边三角形, ABCCBAC60,ABBC. 又BMCN, AMBBNC(SAS), BAMCBN, BQMABQBAMABQCBNABC60.,此题属于等边三角形与全等三角形的综合运用,一般先利用等边三角形的性质判定三角形全等,而后利用全等及等边三角形的性质,求角度或证明边相等.,2.如图,已知ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F (1)求证:ABECAD; (2)求BFD的度数,(1)证明:ABC为等边三角形, BAC=C=60,AB=CA,即BAE=C=60, 在ABE和CAD中, ABECAD(SAS) (2)解:BFD=ABE+
6、BAD, 又ABECAD, ABE=CAD BFD=CAD+BAD=BAC=60,等边三角形的判定,三个角都相等的三角形是等边三角形,等边三角形,从角看:两个角相等的三角形是等腰三角形,从边看:两条边相等的三角形是等腰三角形,三条边都相等的三角形是等边三角形,小明认为还有第三种方法“两条边相等且有一个角是60的三角形也是等边三角形”,你同意吗?,等边三角形的判定方法: 有一个角是60的等腰三角形是等边三角形.,3.根据条件判断下列三角形是否为等边三角形.,(1),(2),(6),(5),不 是,是,是,是,是,(4),(3),不一定 是,例3 如图,在等边三角形ABC中,DEBC,求证:ADE
7、是等边三角形.,证明:, ABC是等边三角形,, A= B= C., DE/BC, ADE= B, AED= C., A= ADE= AED., ADE是等边三角形.,等边三角形的判定的应用,证明:ABC 是等边三角形, A =ABC =ACB =60 DEBC, ABC =ADE, ACB =AED. A =ADE =AED. ADE 是等边三角形.,若点D、E 在边AB、AC 的延长线上,且 DEBC,结论还成立吗?,若点D、E 在边AB、AC 的反向延长线上,且DEBC,结论依然成立吗?,证明: ABC 是等边三角形, BAC =B =C =60 DEBC, B =D,C =E EAD
8、=D =E ADE 是等边三角形,上题中,若将条件DEBC改为AD=AE, ADE还是等边三角形吗?试说明理由.,证明:, ABC是等边三角形,, A= B= C., AD=AE, ADE= B, AED= C., A= ADE= AED., ADE是等边三角形.,例4 等边ABC中,点P在ABC内,点Q在ABC外,且ABPACQ,BPCQ,问APQ是什么形状的三角形?试证明你的结论,解:APQ为等边三角形 证明如下:ABC为等边三角形,ABAC. BPCQ,ABPACQ, ABPACQ(SAS), APAQ,BAPCAQ. BACBAPPAC60, PAQCAQPAC60, APQ是等边三角
9、形,判定一个三角形是等边三角形有以下方法:一是证明三角形三条边相等;二是证明三角形三个内角相等;三是先证明三角形是等腰三角形,再证明有一个内角等于60.,证明:ABC为等边三角形,且AD=BE=CF AF=BD=CE,A=B=C=60, ADFBEDCFE(SAS), DF=ED=EF, DEF是等边三角形,4. 如图,等边ABC中,D、E、F分别是各边上的一点,且AD=BE=CF求证:DEF是等边三角形,解析:ABC是等边三角形,BAC=60,AB=AC 又点D是边BC的中点, BAD= BAC=30,如图,在等边三角形ABC中,点D是边BC的中点,则BAD=_,30,2.如图,等边三角形A
10、BC的三条角平分线交于点O,DEBC,则这个图形中的等腰三角形共有( ),A. 4个 B. 5个 C. 6个 D. 7个,D,1.等边三角形的两条高线相交成钝角的度数是() A105 B120 C135 D150,B,3.在等边ABC中,BD平分ABC,BD=BF,则CDF的度数是() A10 B15 C20 D25,4.如图,ABC和ADE都是等边三角形,已知ABC的周长为18cm,EC =2cm,则ADE的周长是 cm.,12,B,5.如图,在ABC中,ACB=90,CAB=30,以AB为边在ABC外作等边ABD,E是AB的中点,连接CE并延长交AD于F求证:AEFBEC,证明:ABD是等
11、边三角形, DAB=60, CAB=30,ACB=90, EBC=1809030=60,FAE=EBC E为AB的中点,AE=BE 又 AEFBEC, AEFBEC(ASA),如图,A、O、D三点共线,OAB和OCD是两个全等的等边三角形,求AEB的大小.,解:,OAB和OCD是两个全等的等边三角形.,AO=BO,CO=DO, AOB=COD=60., A、O、D三点共线,,DOB=COA=120, COA DOB(SAS)., DBO=CAO.,设OB与EA相交于点F, EFB=AFO,,AEB=AOB=60.,F,图、图中,点C为线段AB上一点,ACM与CBN都是等边三角形 (1)如图,线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 13.3
链接地址:https://www.77wenku.com/p-153565.html