15.2.3 整数指数幂ppt课件(共46张ppt)
《15.2.3 整数指数幂ppt课件(共46张ppt)》由会员分享,可在线阅读,更多相关《15.2.3 整数指数幂ppt课件(共46张ppt)(46页珍藏版)》请在七七文库上搜索。
1、,人教版 数学 八年级 上册,15.2 分式的运算 15.2.3 整数指数幂,第一课时,第二课时,第一课时,负整数指数幂,(1) (m,n是正整数),(2) (m,n是正整数),(3) (n是正整数),(4) (a0,m,n是正整数,mn),(5) (n是正整数),正整数指数幂有以下运算性质:,此外,还学过0指数幂,即a0=1(a0),1. 知道负整数指数幂的意义及表示法.,2. 能运用分式的有关知识推导整数指数幂的意义.,问题1 将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,这些性质还适用吗?,整数指数幂,问题2 am 中指数m 可以是负整数吗?如果可以,那么负整数指数
2、幂am 表示什么?,问题3 根据分式的约分,当 a0 时,如何计算 ?,问题4 如果把正整数指数幂的运算性质 (a0,m,n 是正整数,m n)中的条件m n 去掉,即假设这个性质对于像 的情形也能使用,如何计算?,a3a5= =,a3a5=a3-5=a-2,(1),(2),数学中规定:当n 是正整数时,,这就是说, 是an 的倒数,由(1)(2)想到,若规定a-2= (a0),就能使aman=am-n 这条性质也适用于像a3a5的情形,因此:,1,1,1,填空: (1) = _, = _; (2) = _, = _; (3) = _, = _ (b0),问题5 引入负整数指数和0指数后, (
3、m,n 是正整数),这条性质能否推广到m,n 是任意整数的情形?,例如:a5a-6=a(5-6)=a-1(a0),问题6 类似地,你可以用负整数指数幂或0 指数幂对于其他正整数指数幂的运算性质进行试验,看看这些性质在整数范围内是否还适用?,例如:a0a-5=a0-5=a-5 ,a-3a-7=a-3+(-7)=a-10 , a-2a-5=a-2-(-5)=a3 ,a0a-4=a0-(-4)=a4,(1) (m,n 是整数); (2) (m,n 是整数); (3) (n 是整数); (4) (m,n 是整数); (5) (n 是整数),试说说当m分别是正整数、0、负整数时,am各表示什么意义?,当
4、m是正整数时,am表示m个a相乘.当m是0时,a0表示一个数的n次方除以这个数的n次方,所以特别规定,任何除0以外的实数的0次方都是1. 当m是负整数时, am表示|m|个 相乘.,例1计算:,解:,整数指数幂的计算,解:,1.计算:,解:(1)原式=x2y-3x-3y3 =x2-3y-3+3 =x-1 =,(2)原式= a-2b-4c6a-6b3 = a4b-7c6,能否将整数指数幂的5条性质进行适当合并?,根据整数指数幂的运算性质,当m,n为整数时, , ,因此, ,即同底数幂的除法 可以转化 为同底数幂的乘法 特别地,,所以,,即商的乘方 可以转化为积的乘方,整数指数幂的性质,这样,整数
5、指数幂的运算性质可以归结为:,(1) (m,n 是整数); (2) (m,n 是整数); (3) (n 是整数),故等式正确.,例2 下列等式是否正确?为什么? (1)aman=ama-n; (2),解:(1)aman=am-n=am+(-n)=ama-n, aman=ama-n. 故等式正确.,整数指数幂的性质的应用,(2),2.填空:(-3)2(-3)-2=( );10310-2=( ); a-2a3=( );a3a-4=( ). 3.计算:(1)0.10.13 (2)(-5)2 008(-5)2 010 (3)10010-110-2 (4)x-2x-3x2,1,10,a7,1.下列计算正
6、确的是() A(a+b)2=a2+b2 Ba2+2a2=3a4 Cx2y =x2(y0) D( 2x2)3= 8x6,2.下列计算正确的是() Aa2a=a2 Ba6a2=a3 Ca2b2ba2=a2b D( )3= ,D,C,1.下列计算正确的是( ) A.30=0 B.-|-3|=-3 C.3-1=-3 D. =3,2.下列计算不正确的是( ) A. B. C. D.,B,B,1.若0x1,则x-1,x,x2的大小关系是( ) A.x-1xx2 B.xx2x-1 C.x2xx-1 D.x2x-1x,C,2.计算.,若 ,试求 的值.,整数指数幂,零指数幂:当a0时,a0=1,负整数指数幂:



- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 15.2

链接地址:https://www.77wenku.com/p-153580.html