湖北省黄冈市2021届高三9月调研考试数学试卷(含答案解析)
《湖北省黄冈市2021届高三9月调研考试数学试卷(含答案解析)》由会员分享,可在线阅读,更多相关《湖北省黄冈市2021届高三9月调研考试数学试卷(含答案解析)(16页珍藏版)》请在七七文库上搜索。
1、*2020 年高三年高三黄冈黄冈 9 月调考数学试题月调考数学试题 一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 1. 已知集合 2 |320, |124 x Ax xxBx,则AB ( ) A |12xx B. |12xx C. |12xx D. |02xx 2. 已知, , ,a b c d都是常数,,ab cd.若( )()()2020f xxa xb=-的零点为, c d, 则下列不等式正确的是( ) Aacdb Bcabd Cacbd Dcdab 3. 已知 0.4 2x , 2 lg 5 y , 0.4 2
2、5 z ,则下列结论正确的是( ) Ax yz By zx Cz yx Dz xy 4. 若实数a,b满足 14 ab ab +=,则ab的最小值为( ) A. 2 B2 C2 2 D4 5. 我国著名数学家华罗庚先生曾说: 数缺形时少直观, 形缺数时难入微, 数形结合百般好, 隔裂分家万事休. 在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数 的解析式来琢磨函数的图象的特征,如函数 (1)esin ( ) e1 x x x f x 在区间 (-,) 2 2 上的图象 的大致形状是( ) A B C D 6.已知向量(2,1)a = r ,(0,)bm= r ,(2,4)c =
3、 r ,且()abc- r rr ,则实数m的值为( ) A. 4 B. 3 C. 2 D. 1 7.已知抛物线 2 :4C yx的焦点为F,准线为l,P是l上一点,Q是直线PF与抛物线C的 一个交点,若4PFFQ,则QF ( ) A3 B 5 2 C 3 2 D 3 2 或 5 2 8. 明代朱载堉创造了音乐上极为重要的“等程律”. 在创造律制的过程中, 他不仅给出了求解 三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法,比如 , 若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕=黄钟 太簇,大吕 = 3 2 (黄钟) 夹钟,太簇= 3 2 黄钟 (夹钟).
4、据此,可得正项等比数列 n a中, k a A. 1 1 n k n k n aa B. 1 1 n k n k n a a C. 1 1 1 n kk n n aa D. 1 1 1 kn k n n aa 二、多项选择题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的四个选项中,有 多项符合题目要求。全部选对的得 5 分,部分选对的得 3 分,有选错的得 0 分。 9. 下列有关命题的说法正确的是 ( ) A. (0,)x ,使得 2 sin2 2 sin x x 成立 B. 命题:PxR ,都有cos1x ,则 0 :PxR ,使得 0 cos1x C. 函数( )11f
5、 xxx 与函数 2 ( )1g xx是同一个函数 D. 若x、y、z均为正实数,且3412 xyz ,( ,1),() xy n nnN z ,则4n 10.已知曲线C的方程为 22 1() 26 xy kR kk ,则下列结论正确的是( ) A. 当4k 时,曲线C为圆 B. 当0k 时,曲线C为双曲线,其渐近线方程为3yx C. “4k ”是“曲线C为焦点在x轴上的椭圆”的充分而不必要条件 D. 存在实数k使得曲线C为双曲线,其离心率为2 11.已知函数 cos,sincos ( ) sin,sincos xxx f x xxx = 则下列说法正确的是( ) A( )f x的值域是0,1
6、 B( )f x是以为最小正周期的周期函数 C( )f x在区间 , 2 轾 犏 犏 臌 上单调递增 D( )f x在)0,2上有2个零点 12. 一副三角板由一块有一个内角为60的直角三角形和一块等腰直角三角形组成,如图所 示, 90 ,BF60 ,45 ,ADBCDE ,现将两块三角形板拼接在一起, 得三棱锥FCAB,取BC中点O与AC中点M,则下列判断中正确的是( ) A. 直线BC 面OFM B. AC与面OFM所成的角为定值 C. 设面ABF面MOFl,则有lAB D. 三棱锥FCOM体积为定值. 三、填空题:本题共 4 小题,每小题 5 分,共 20 分。 13.设函数 ln ,1
7、 ( ) 1,1 x x f x x x = - ,则实数m的取值范围是_ 14. 已 知各 项为 正 数的数 列 n a的 前n项 和 为 n S, 且 1 1,a 2 11 () nn SSa (2,)nnN,则数列 n a的通项公式为 . 15. 若 1tan 2020 1tan ,则 1 tan2 cos2 =_. 16在三棱锥DABC中,CD 底面ABC,ACBC,5ACBD,4BC ,则此三 棱锥外接球的表面积为_ 四、解答题:本题共 6 小题,共 70 分。解答应写出文字说明、证明过程或演算步骤。 17. (本小题满分 12 分)在1 函数 1 ( )sin()(0,|) 22
8、f xx 的图像向右平移 12 个单位长度得到( )g x的图像,( )g x的图像关于原点对称, 2 向量 11 ( 3sin,cos),( cos, ),0 2224 mxx nx ,( )f xm n; 3 函数 1 ( )cossin()(0) 2264 f xxx 这三个条件中任选一个,补充在下面问题 中,并解答. 已知_,函数( )f x图像的相邻两条对称轴之间的距离为 2 . (1)求 ( ) 6 f的值; (2)求函数( )f x在0,上的单调递减区间. 注:如果选择多个条件分别解答,按第一个解答计分. 18. (本小题满分 12 分)如图所示, 11 ABC, 122 C B
9、 C, 233 C B C均为边长为 1 的正三角形, 点 1 C, 2 C在线段 3 AC上,点(1,2,10) i P i 在线段 33 B C上,且满足 3 11223103 C PPPPPP B= uuuruuu ruuuruuuu r L, 连接 2 AB、(1,2,10) i AP i ,设 1 CAa= u u u r r , 11 C Bb= uuuu rr . (1)试用a r ,b r 表示 1 AP uuu r , 2 AP uuu r , 3 AP uuu r ; (2)求 10 2 1 () i i ABAP = uuur uuu r 的值. 19. (本小题满分 1
10、2 分)已知数列 n a满足 1 (1)1(N*) nn nanan ,且 1 1a . (1)求数列 n a的通项公式; (2)若数列 n b满足 2 n n n a b ,求数列 n b的前n项和 n S. 20. (本小题满分 12 分)若锐角ABC中,角, ,A B C所对的边分别为, ,a b c,若 3 2 ( )( 3sincos)3 3 x f xCC xx的图像在点( ,( )C c f c处的切线与直线yx垂直, 求ABC面积的最大值. 21. (本小题满分 12 分)如图, 有一生态农庄的平面图是一个半圆形, 其中直径长为2km, C、 D 两点在半圆弧上满足ADBC,设
11、COB,现要在景区内铺设一条观光通道,由 ,AB BC CD和DA组成. (1)用表示观光通道的长l,并求观光通道l的最大值; (2)现要在农庄内种植经济作物,其中在AOD中种植鲜花,在 OCD中种植果树,在扇形COB内种植草坪,已知种植鲜花和种植 果树的利润均为2百万元 2 /km,种植草坪利润为1百万元 2 /km,则 当为何值时总利润最大? 22. (本小题满分 12 分)已知函数( ) x f xxe. (1)求( )f x的单调区间; (2)若函数 1 3 ( )2ln() m x g xxxmx e ,当xe时,( )0g x 恒成立,求实数m的取 值范围. 黄冈市 2020 年高
12、三年级 9 月质量检测全解析 数学试题数学试题 2020.9.22 测试测试 一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 1. 已知集合 2 |320, |124 x Ax xxBx,则AB ( ) A |12xx B. |12xx C. |12xx D. |02xx 解析:1,2 ,0,2AB所以AB |12xx,故选:C 2. 已知, , ,a b c d都是常数,,ab cd.若( )()()2020f xxa xb=-的零点为, c d, 则下列不等式正确的是( ) Aacdb Bcabd Cacbd Dcda
13、b 解析:令( )()()g xxa xb=-,此抛物线开口向上,且易知: , a b为( )0g x =的两根,, c d为( )2020g x =的两根.根据图像结合,ab cd知: cabd,故选:B 3. 已知 0.4 2x , 2 lg 5 y , 0.4 2 5 z ,则下列结论正确的是( ) Ax yz By zx Cz yx Dz xy 解析:根据常见中间值 0 和 1 比较: 0.4 12x , 2 lg0 5 y , 0.4 1 2 0 5 z ,所以y zx ,故选:B 4. 若实数a,b满足 14 ab ab +=,则ab的最小值为( ) A. 2 B2 C2 2 D4
14、 解析:由题设,0,0ab,所以 1444 2ab abab ab 所以4ab,故选:D 5. 我国著名数学家华罗庚先生曾说: 数缺形时少直观, 形缺数时难入微, 数形结合百般好, 隔裂分家万事休. 在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数 的解析式来琢磨函数的图象的特征,如函数 (1)esin ( ) e1 x x x f x 在区间 (-,) 2 2 上的图象 的大致形状是( ) A B C D 解析:通过对函数的奇偶性和趋近研究函数图像,本题 (1)esin ( ) e1 x x x f x , esin()esin ) ()( ) e1 ) e (1)(1( 1
15、 xx xx xx fxf x , 所以( )f x为偶函数,排除 B,D,又0 ,esin0 ,e12 ,10 , xx xx ( )0f x ,所以选:A 6.已知向量(2,1)a = r ,(0,)bm= r ,(2,4)c = r ,且()abc- r rr ,则实数m的值为( ) A. 4 B. 3 C. 2 D. 1 解析:()()()2,1,2,4abm c-=-= r rr ,又因为()abc- r rr ,所以有: 224(1)0,2mm,故选:C 7.已知抛物线 2 :4C yx的焦点为F,准线为l,P是l上一点,Q是直线PF与抛物线C的 一个交点,若4PFFQ,则QF (
16、 ) A3 B 5 2 C 3 2 D 3 2 或 5 2 解析:过 Q 作QMl交l于点 M,设QFd,由抛物线定义:QMd,又4PFFQ, 所以4PFd,设l交x轴于点 N,根据, PFFN PNFPMQ PQMQ 即: 42 4 d ddd ,得 5 2 QFd,故选:B 8. 明代朱载堉创造了音乐上极为重要的“等程律”. 在创造律制的过程中, 他不仅给出了求解 三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法,比如 , 若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕=黄钟 太簇,大吕 = 3 2 (黄钟) 夹钟,太簇= 3 2 黄钟 (夹钟). 据此,
17、可得正项等比数列 n a中, k a A. 1 1 n k n k n aa B. 1 1 n k n k n a a C. 1 1 1 n kk n n aa D. 1 1 1 kn k n n aa 解析:本题看选项转化为:已知首项 1 a和末项 n a,求第k项 k a,根据等数列有: 11 1 1 1 1 1 111 11 1111 11 = k k n n knn kknn nn kn aa aa qaaaa aa ,故选:C 二、多项选择题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的四个选项中,有 多项符合题目要求。全部选对的得 5 分,部分选对的得 3 分,有
18、选错的得 0 分。 9. 下列有关命题的说法正确的是 ( ) A. (0,)x ,使得 2 sin2 2 sin x x 成立 B. 命题:PxR ,都有cos1x ,则 0 :PxR ,使得 0 cos1x C. 函数( )11f xxx 与函数 2 ( )1g xx是同一个函数 D. 若x、y、z均为正实数,且3412 xyz ,( ,1),() xy n nnN z ,则4n 解 析 : 分 析 选 项 A: (0,),sin0,1xx, 有 2 sin2 2 sin x x , 当 且 仅 当 2 sin sin x x ,即sin2x ,显然这是不可能的,所以不存在,故选项 A 错误
19、;选项 B: 考查全称量词命题的否定,显然正确;选项 C:函数( )11f xxx 与函数 2 ( )1g xx定义域不同, 即( )f x定义域是1,,( )g x定义域是, 11, , 故选项 C 错误;选项 D:令34121 xyz t t,所以 34 12 loglog log ttxy zt 3 3 11 log 3log 4111 =(log 3log 44 1 log 3log 4log 4 log 12 tt tt tt t ) ()=2+log,又因为 3 1log 42,所以 3 3 19 4 log 42 42+log,又( ,1),() xy n nnN z ,所以 4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖北省 黄冈市 2021 届高三 调研 考试 数学试卷 答案 解析
链接地址:https://www.77wenku.com/p-155089.html