3.2.2 复数的乘法~3.2.3 复数的除法 学案(含答案)
《3.2.2 复数的乘法~3.2.3 复数的除法 学案(含答案)》由会员分享,可在线阅读,更多相关《3.2.2 复数的乘法~3.2.3 复数的除法 学案(含答案)(7页珍藏版)》请在七七文库上搜索。
1、3.2.2 复数的乘法复数的乘法 3.2.3 复数的除法复数的除法 学习目标 1.掌握复数代数形式的乘法和除法运算.2.理解复数乘法的交换律、结合律和乘 法对加法的分配律.3.掌握共轭复数的性质 知识点一 复数的乘法 思考 怎样进行复数的乘法运算? 答案 两个复数相乘,类似于两个多项式相乘,只要把已得结果中的 i2换成1,并且把实 部与虚部分别合并即可 梳理 (1)复数的乘法 设 z1abi,z2cdi,a,b,c,dR,定义 z1z2(acbd)(adbc)i. (2)复数乘法的运算律 对任意复数 z1,z2,z3,有 交换律 z1 z2z2 z1 结合律 (z1 z2) z3z1 (z2
2、z3) 乘法对加法的分配律 z1 (z2z3)z1 z2z1 z3 对复数 z,z1,z2和自然数 m,n 有 zm znzm n,(zm)nzmn,(z 1 z2) nzn 1 z n 2. (3)共轭复数的性质 设 z 的共轭复数为 z ,则: zz |z|2| z |2. z2( z )2. z1 z2 z1z2. 知识点二 复数的除法法则 思考 类比根式除法的分母有理化,比如1 3 3 2 1 33 2 3 23 2,你能写出复数的除法法 则吗? 答案 设 z1abi,z2cdi(cdi0), 则z1 z2 abi cdi acbd c2d2 bcad c2d2 i. 梳理 (1)复数
3、的倒数 已知 zabi(a,bR),如果存在一个复数 z,使 z z1,则 z叫做 z 的倒数,记作1 z. (2)复数的除法法则 设z1abi, z2cdi(cdi0), 则z1 z2 abi cdi acbd c2d2 bcad c2d2 i(a, b, c, dR且cdi0) 特别提醒:复数的除法和实数的除法有所不同,实数的除法可以直接约分、化简得出结果; 而复数的除法是先将两复数的商写成分式,然后分母实数化(分子、分母同乘分母的共轭复 数) 1复数加、减、乘、除的混合运算法则是先乘除,再加减( ) 2两个共轭复数的和与积是实数( ) 3若 z1,z2C,且 z21z220,则 z1z2
4、0.( ) 类型一 复数的乘除运算 例 1 计算: (1)(1i)(1i)(1i); (2) 1 2 3 2 i 3 2 1 2i (1i); (3)(23i) (12i); (4)32i 23i 32i 23i. 解 (1)(1i)(1i)(1i)1i2(1i)21i1i. (2) 1 2 3 2 i 3 2 1 2i (1i) 3 4 3 4 3 4 1 4 i (1i) 3 2 1 2i (1i) 3 2 1 2 1 2 3 2 i 1 3 2 1 3 2 i. (3)(23i) (12i)23i 12i 23i12i 12i12i 2634i 1222 4 5 7 5i. (4)方法一
5、 32i 23i 32i 23i 32i23i32i23i 23i23i 613i6613i6 49 26i 132i. 方法二 32i 23i 32i 23i i23i 23i i23i 23i ii2i. 反思与感悟 (1)复数的乘法运算可以把 i 看作字母,类比多项式的乘法进行 (2)复数的除法一般先写成分式形式,再把分母实数化,类比实数中的分母有理化进行 跟踪训练 1 计算: (1)(1i) 1 2 3 2 i (1i); (2) 2 3i 3 2i; (3) i2i1 1ii1i. 解 (1)原式(1i)(1i) 1 2 3 2 i 2 1 2 3 2 i 1 3i. (2)原式 2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.2.2 复数的乘法3.2 3.2 复数 乘法
链接地址:https://www.77wenku.com/p-155249.html