【秋季课程北师大版初二数学】第2讲:是直角三角形吗_学案
《【秋季课程北师大版初二数学】第2讲:是直角三角形吗_学案》由会员分享,可在线阅读,更多相关《【秋季课程北师大版初二数学】第2讲:是直角三角形吗_学案(11页珍藏版)》请在七七文库上搜索。
1、 一定是直角三角形吗 通过对本节课的学习,你能够: 已知三边判断一个三角形是不是直角三角形. 通过勾股数的学习掌握一定的快速判断直角三角形的方法技巧. 第 2 讲 适用学科 初中数学 适用年级 初二 适用区域 北师版区域 课时时长(分钟) 120 知识点 1、直角三角形的判定 2、勾股数 3、求四边形的面积 教学目标 1理解勾股定理逆定理的具体内容及勾股数的概念; 2能根据所给三角形三边的条件判断三角形是否是直角三角形; 3经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力; 4体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、 用数学的兴趣; 教学重点 理解勾股
2、定理逆定理的具体内容. 教学难点 理解勾股定理逆定理的具体内容. 【知识导图】【知识导图】 一定是直角三角形吗一定是直角三角形吗 勾股定理逆定理勾股定理逆定理 勾股数勾股数 概 述 在古代,没有直尺、圆规等作图工具,人们是怎样画直角三角形的呢? (1)情境引入 1直角三角形中,三边长度之间满足什么样的关系? 2如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢? 意图:通过情境的创设引入新课,激发学生探究热情。 效果:从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好 的基础. (2)实验观察 1、 用一根打了 13 个等距离结的
3、细绳子,在小黑板上,用钉子钉在第一个结上,再钉在第 4 个结上, 再钉在第 8 个结上,最后将第十三个结与第一个结钉在一起然后用三角板量出最大角的度数可以发现 这个三角形是直角三角形。(这是古埃及人画直角的方法) 2、 用圆规、刻度尺作ABC,使 AB=5 ,AC=4 ,BC=3 ,量一量C。 再画一个三角形,使它的三边长分别是 5 、12 、13 ,这个三角形有什么特征? 为什么用上面的三条线段围成的三角形,就一定是直角三角形呢?它们的三边有怎样的关系? 猜想: 如果一个三角形的三边长cba,满足下面的关系 222 cba, 那么这个三角形是直角三角形。 教学过程 考点 1 勾股定理的逆定理
4、(直角三角形的判定) 二、知识讲解 一、导入 (3)探究新知 1、探究:在下图中,ABC 的三边长a,b,c满足 222 cba。如果ABC 是直角三角形,它应 该与直角边是a,b的直角三角形全等。实际情况是这样吗?我们画一个直角三角形 ,C BA, 使 , C =90, , CA,=b, ,C B =a。把画好的 ,C BA, 剪下,放到ABC 上,它们重合吗? 2、用三角形全等的方法证明这个命题。(由于难度较大,由教师示范证明过程) 已知:在ABC 中,AB=c,BC=a,AC=b,并且 222 cba,如上图(1)。 求证:C=90。 证明 : 作ABC,使C=90,AC=b, BC=a
5、,如上图(2), 那么 AB 2 = 22 ba (勾股定理) 又 222 cba (已知) AB 2 = 2 c,AB=c (AB0) 在ABC 和ABC中, BC=a=BC CA=b=CA AB=c=AB ABCABC(SSS) C=C=90, ABC 是直角三角形 勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。如勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。如 果三角形三边长果三角形三边长 a,b,c 满足满足 a + b = c ,那么这个三角形是直角三角形。那么这个三角形是直角三角形。 【强调说明】(1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 秋季课程北师大版初二数学 秋季 课程 北师大 初二 数学 直角三角形
链接地址:https://www.77wenku.com/p-157709.html