2020年秋苏教版八年级上数学期中复习专题(一)动点问题(含答案)
《2020年秋苏教版八年级上数学期中复习专题(一)动点问题(含答案)》由会员分享,可在线阅读,更多相关《2020年秋苏教版八年级上数学期中复习专题(一)动点问题(含答案)(14页珍藏版)》请在七七文库上搜索。
1、第 1 页 共 14 页 初二数学期中复习专题一:动点问题初二数学期中复习专题一:动点问题 1、运动中构造全等 1. (13 中)已知正方形 ABCD 中,AB=BC=CD=DA=16,A=B=C=D=90 ,动点 P 以每秒一个 单位速度从点 B 出发沿射线 BC 方向运动,设点 P 的运动时间为 t,连接 PA. (1) 如图 1,动点 Q 同时以每秒 4 个单位速度从点 A 出发沿正方形的边 AD 运动,求 t 为何值时,以点 Q 及正方形的某两个顶点组成的三角形和PAB 全等; (2) 如图 2,在(1)的基础上,当点 Q 到达点 D 以后,立即以原速沿线段 DC 向点 C 运动,当
2、Q 到达 点 C 时,两点同时停止运动,求 t 为何值时,以点 Q 及正方形的某两个顶点组成的三角形和PAB 全等. 2 (45 南摄山月考) (8 分)如图,已知正方形 ABCD 中,边长为 10cm,点 E 在 AB 边上,BE6cm (1) 如果点 P 在线段 BC 上以 4cm/秒的速度由 B 点向 C 点运动,同时,点 Q 在线段 CD 上以 acm/秒 的速度由 C 点向 D 点运动,设运动的时间为 t 秒, CP 的长为 cm(用含 t 的代数式表示) ; 若以 E、B、P 为顶点的三角形和以 P、C、Q 为顶点的三角形全等,求 a 的值 (2) 若点 Q 以中的运动速度从点 C
3、 出发,点 P 以原来的运动速度从点 B 同时出发,都逆时针沿正 方形 ABCD 四边运动则点 P 与点 Q 会不会相遇?若不相遇,请说明理由若相遇,求出经过多长时 间点 P 与点 Q 第一次在正方形 ABCD 的何处相遇? 第 2 页 共 14 页 3 (67 南南航第一)如图(1) ,AB4cm,ACAB,BDAB,ACBD3cm点 P 在线段 AB 上以 1cm/s 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动它们运动的时间为 t(s) (1) 若点 Q 的运动速度与点 P 的运动速度相等,当 t1 时,ACP 与BPQ 是否全等,请说明理由,
4、并判断此时线段 PC 和线段 PQ 的位置关系; (2) 如图(2) ,将图(1)中的“ACAB,BDAB”为改“CABDBA60”,其他条件不变设 点 Q 的运动速度为 x cm/s,是否存在实数 x,使得ACP 与BPQ 全等?若存在,求出相应的 x、t 的 值;若不存在,请说明理由 4.(一中)(8 分)如图,已知ABC 中, AB AC 12 厘米, BC 9 厘米, B C ,点 D 为 AB 的 中点. ( 1 ) 如果点 P 在线段 BC 上以 3 厘米/秒的速度由 B 向 C 运动,同时点 Q 在线段 CA 上由 C 点向 A 点运动. 若点 Q 的运动速度与点 P 的运动速度
5、相等,1 秒钟时,BPD 与CQP 是否全等,请说明; 点 Q 的运动速度与点 P 的运动速度不相等,当点 Q 的运动速度为多少时,能够使BPDCPQ? ( 2 ) 若点 Q 以的运动速度从点 C 出发,点 P 以原来运动速度从点 B 同时出发,都逆时针沿 ABC 的三 边运动,求多长时间点 P 与点 Q 第一次在ABC 的哪条边上相遇? 第 3 页 共 14 页 5.(钟英)如图,CAAB,垂足为点 A,AB=8,AC=4,射线 BMAB,一动点 E 从 A 点出发以 2/秒的 速度沿射线 AN 运动,点 D 为射线 BM 上一动点,随着 E 点运动而运动,且始终保持 ED=CB,当点 E
6、运 动 秒时,DEB 与BCA 全等. 6.(67 南玄华中第一)如图,AB12,CAAB 于 A,DBAB 于 B,且 AC4m,P 点从 B 向 A 运动, 每分钟走 1m,Q 点从 B 向 D 运动,每分钟走 2m,P、Q 两点同时出发,运动 分钟后CAP 与 PQB 全等 7.(67 南 29 中期中) (2 分)已知:如图,在长方形 ABCD 中,AB4,AD6延长 BC 到点 E,使 CE 2,连接 DE,动点 P 从点 B 出发,以每秒 2 个单位的速度沿 BCCDDA 向终点 A 运动,设点 P 的 运动时间为 t 秒,当 t 的值为 秒时,ABP 和DCE 全等 第 4 页
7、共 14 页 8.(45 南摄山月考) ( (3 分)如图,ABC 中,ACB90,AC6cm,BC8cm点 P 从 A 点出发沿 ACB 路径向终点运动, 终点为 B 点; 点 Q 从 B 点出发沿 BCA 路径向终点运动, 终点为 A 点 点P 和 Q 分别以每秒 1cm 和 3cm 的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时 刻,分别过 P 和 Q 作 PEl 于 E,QFl 于 F设运动时间为 t 秒,则当 t 秒时,PEC 与 QFC 全等 2、运动中产生等腰三角形 9.(78 南建期中) (9 分)如图,在四边形 ABCD 中,ABCD,D90,若 AD3,
8、AB4,CD8,点 P 为线段 CD 上的一动点,若ABP 为等腰三角形,求 DP 的长 第 5 页 共 14 页 10.(78 南鼓求真期末)如图,在ABC 中,ABAC2,B40,点 D 在线段 BC 上运动(D 不与 B、 C 重合) ,连接 AD,作ADE40,DE 交线段 AC 于 E ( 1 ) 当BDA115时,BAD ;点 D 从 B 向 C 运动时,BDA 逐渐变 (填 “大” 或“小” ) ; ( 2 ) 当 DC 等于多少时,ABDDCE,请说明理由; ( 3 ) 在点 D 的运动过程中,ADE 的形状也在改变,判断当BDA 等于多少度时,ADE 是等腰三 角形 11.(
9、求真)(12 分)如图,在ABC 中, ACB 90 , AB 10cm , BC 6cm ,若点 P 从点 A 出发, 以每秒 1cm 的速度沿折线 ACBA 运动,设运动时间为 t 秒( t 0 ) (1) 当点 P 在 AC 上,且满足 PA PB 时,求出此时 t 的值; (2) 当点 P 在BAC 的角平分线上时,求出此时 t 的值; (3) 当 P 在运动过程中,求出 t 为何值时,BCP 为等腰三角形.(直接写出结果) (4) 若 M 为 AC 上一动点,N 为 AB 上一动点,是否存在 M、N 使得 BM MN 的值最小?如果有请求 出最小值,如果没有请说明理由. 第 6 页
10、共 14 页 初二数学期中复习专题一:动点问题初二数学期中复习专题一:动点问题 1、运动中构造全等 1.(1)当 Q 在 DA 上时,如图所示: 此时APBCQD, BPDQ,即t 16 4t , 解得t 16 ; 5 (2)当 Q 在 CD 上时,有两种情况 如图 1,当 Q 在上边,则QADPAB, BPQD,即 4t 16 t , 解得t 16 ; 3 当 Q 在下边,如图 2,则APBBQC, 则 BPCQ,即32 4t t , 解得t 32 ; 5 2.【分析】(1)根据正方形边长为 10cm 和点 P 在线段 BC 上的速度为 4cm/秒即可求出 CP 的长; 分BPECPQ 和B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 年秋苏教版八 年级 数学 期中 复习 专题 问题 答案
链接地址:https://www.77wenku.com/p-160394.html