第44讲 空间向量的概念(学生版)备战2021年新高考数学微专题讲义
《第44讲 空间向量的概念(学生版)备战2021年新高考数学微专题讲义》由会员分享,可在线阅读,更多相关《第44讲 空间向量的概念(学生版)备战2021年新高考数学微专题讲义(10页珍藏版)》请在七七文库上搜索。
1、 第 1 页 / 共 10 页 第第 44 讲讲 空间向量的概念和空间位置关系空间向量的概念和空间位置关系 一、课程标准 1、空间向量的线性运算 2、共线、共面向量定理的应用 3、空间向量数量积的应用 4、利用空间向量证明平行或垂直 二、基础知识回顾 1空间向量及其有关概念 概念 语言描述 共线向量(平行 向量) 表示空间向量的有向线段所在的直线互相平行或重合 共面向量 平行于同一个平面的向量 共线向量定理 对空间任意两个向量 a,b(b0),ab存在 R,使 ab 共面向量定理 若两个向量 a,b 不共线,则向量 p 与向量 a,b 共面存在唯一的有序实 数对(x,y),使 pxayb 空间
2、向量基本定 理及推论 定理:如果三个向量 a,b,c 不共面,那么对空间任一向量 p,存在唯一 的有序实数组x,y,z使得 pxaybzc. 推论:设 O,A,B,C 是不共面的四点,则对平面 ABC 内任一点 P 都存 在唯一的三个有序实数 x,y,z,使 OP x OA y OB z OC 且 x yz1 2数量积及坐标运算 (1)两个空间向量的数量积:a b|a|b|cosa,b ;aba b0(a,b 为非零向量);设 a(x, y,z),则|a|2a2,|a|x2y2z2. (2)空间向量的坐标运算: a(a1,a2,a3),b(b1,b2,b3) 向量和 ab(a1b1,a2b2,
3、a3b3) 向量差 ab(a1b1,a2b2,a3b3) 数量积 a ba1b1a2b2a3b3 共线 aba1b1,a2b2,a3b3(R,b0) 垂直 aba1b1a2b2a3b30 第 2 页 / 共 10 页 夹角公式 cosa,b a1b1a2b2a3b3 a21a22a23b21b22b23 三、自主热身、归纳总结 1、空间四点 A(2,3,6),B(4,3,2),C(0,0,1),D(2,0,2)的位置关系为( ) A. 共线 B. 共面 C. 不共面 D. 无法确定 2、已知向量 a(2m1,3,m1),b(2,m,m),且 ab,则实数 m 的值等于( ) A. 3 2 B.
4、 2 C. 0 D. 3 2或2 3、在空间直角坐标系中,已知 A(1,2,3),B(2,1,6),C(3,2,1),D(4,3,0),则直线 AB 与 CD 的位置关系是( ) A. 垂直 B. 平行 C. 异面 D. 相交但不垂直 4、如图,平行六面体 ABCD- A1B1C1D1中,AC 与 BD 的交点为点 M,设 AB a, ADb,AA 1 c,则向 量C1M 可用 a,b,c 表示为_ 5、如图所示,在正方体 ABCD- A1B1C1D1中,O 是底面正方形 ABCD 的中心,M 是 D1D 的中点,N 是 A1B1 的中点,则直线 ON,AM 的位置关系是_ 6、O 为空间中任
5、意一点,A,B,C 三点不共线,且 OP 3 4 OA 1 8 OB t OC,若 P,A,B,C 四点共面, 则实数 t_. 第 3 页 / 共 10 页 四、例题选讲 考点一 空间向量的线性运算 例 1 (1) 向量 a(2,3,1),b(2,0,4),c(4,6,2),下列结论正确的是_(填序 号) ab,ac; ab,ac; ac,ab. (2) 已知点 A,B,C 的坐标分别为(0,1,0),(1,0,1),(2,1,1),点 P 的坐标是(x,0,y),若 PA 平面 ABC,则点 P 的坐标是_ 变式 1、 (1) 如图所示, 在平行六面体 ABCD- A1B1C1D1中, M
6、为 A1C1与 B1D1的交点 若 AB a,ADb, AA1 c,则下列向量中与 BM相等的是( ) A1 2a 1 2bc B.1 2a 1 2bc C1 2a 1 2bc D.1 2a 1 2bc (2) 已知正方体 ABCD- A1B1C1D1中, 点 E 为上底面 A1C1的中心, 若 AE AA 1 x ABy AD, 则 x, y 的值分别为( ) A1,1 B1,1 2 C.1 2, 1 2 1 D.1 2,1 变式 2、 在三棱锥 OABC 中,M,N 分别是 OA,BC 的中点,G 是ABC 的重心,用向量OA ,OB ,OC 表 示MG ,OG . 第 4 页 / 共 1
7、0 页 变式 3、 如图所示, 在平行六面体 ABCD- A1B1C1D1中, 设AA1 a,ABb,ADc, M, N, P 分别是 AA 1, BC,C1D1的中点 试用 a,b,c 表示以下各向量: (1) AP ; (2)A1N ; (3) MP NC 1 . 方法总结: 本题考查空间向量基本定理及向量的线性运算. 用不共面的三个向量作为基向量表示某一向 量时注意以下三点:(1)结合已知和所求向量观察图形,将已知向量和未知向量转化至三角形或平行四边形 中是解题的关键. (2)要正确理解向量加法、减法与数乘运算的几何意义,首尾相接的若干向量之和,等于由 起始向量的起点指向末尾向量的终点的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第44讲 空间向量的概念学生版 备战2021年新高考数学微专题讲义 44 空间 向量 概念 学生 备战 2021 高考 数学 专题 讲义
链接地址:https://www.77wenku.com/p-161697.html