考点18 等差数列与等比数列的基本量(学生版)备战2021年新高考数学微专题补充考点精练
《考点18 等差数列与等比数列的基本量(学生版)备战2021年新高考数学微专题补充考点精练》由会员分享,可在线阅读,更多相关《考点18 等差数列与等比数列的基本量(学生版)备战2021年新高考数学微专题补充考点精练(7页珍藏版)》请在七七文库上搜索。
1、 第 1 页 / 共 7 页 考点考点 18 等差数列与等比数列的基本量等差数列与等比数列的基本量 1. 理解等差数列、等差中项的概念,掌握等差数列的通项公式、前 n 项和的公式,能运用公式 解决一些简单问题 . 2. 能在具体的情境中识别数列的等差关系,并能运用有关的知识解决问题 . 了解等差数列与 一次函数的关系及等差数列的前 n 项和的公式与二次函数的关系 . 3. 理解等比数列的概念;掌握等比数列的通项公式、 前 n 项和的公式,能运用公式解决一些简 单问题 . 4. 能在具体的情境中识别数列的等比关系,并能运用有关的知识解决问题 . 了解等比数列与 指数函数的关系 等比数列是高考中的
2、 C 级要求,它作为一种特殊的数列,也是一种基本的数列形式,是高考命 题的热点与难点 . 考查形式主要有两种:一是考查等比数列的概念,二是公式、性质的直接应 用及等比中项的间接应用 . 解题中,要紧紧抓住以下几个方面: 1. 深刻理解并应用好它的定义 . 在理解定义时,要紧扣从“第二项起”和“比是同一常数” 这两点 . 2. 高效、 灵活地应用好的通项公式及前 n 项和公式,进行科学的计算 . 在等比数列中有五个 量 a 1 ,q , n , a n , S n ,当知道其中三个量就可以求出其余的两个量,即“知三求二”, 要求能根据不同的问题合理选用不同的公式,恰当应用它们,做到运算简单、合理
3、、有效,运算 量小 . 为此,就得合理地应用好两种基本方法“基本量法”与“对称性”法 . 另外,对于利用 等比数列的前 n 项和公式时,要注意判断它的公比 q 是否等于 1 ,否则就容易导致出错 . 3. 合理应用好等比数列的相关性质,等比数列的相关性质主要有两个方面 . 一是“通项”的 性质;二是“和”的性质 . 4. 处理好一类问题 . 在高考命题中,经常借助于数列的通项与前 n 项和的关系来命题问题, 这是高考数列命题的热点,近几年中,江苏省高考多次在这方面进行命题,今后,还会在这方面 进行命题 . 等差数列与等比数列作为两种基本的数列,是高考中数列考查的重中之重,值得关注 . 考查的
4、形式主要有等差数列、等比数列的实际应用以及等差数列、等比数列与其他知识的综合 . 在 复习中,要紧抓以下几个方面 : 1. 关注两种基本方法:研究等差数列、等比数列的基本方法就是“基本量法”及活用好它们的 考纲要求考纲要求 近三年高考情况分析近三年高考情况分析 考点总结考点总结 第 2 页 / 共 7 页 “对称性”; 2. 领悟等差数列、等比数列的两类本质:等差数列、等比数列是两类特殊数列,又是两类特殊 的函数,这种双重身份,注定它们必然是高考中的重点、 难点,故而,学习中,要从 “函数” 及 “数 列”这两个方面来认识它们; 3. 两类数学思想:分类讨论思想以及函数与方程的思想是解决数列问
5、题所经常使用的两类数 学思想 1、【2020 年全国 2 卷】 数列 n a中, 1 2a , m nmn aa a , 若 1 55 121 0 22 kkk aaa , 则k ( ) A. 2 B. 3 C. 4 D. 5 2、 【2020 年浙江卷】已知等差数列an的前 n 项和 Sn,公差 d0, 1 1 a d 记 b1=S2,bn+1=Sn+2S2n,n N, 下列等式不可能成立的是( ) A. 2a4=a2+a6 B. 2b4=b2+b6 C. 2 428 aa a D. 2 42 8 bb b 3、 【2019 年高考全国 I 卷理数】记 n S为等差数列 n a的前 n 项和
6、已知 45 05Sa,则 A 25 n an B 310 n an C 2 28 n Snn D 2 1 2 2 n Snn 4、 【2019 年高考全国 III 卷理数】已知各项均为正数的等比数列 n a的前 4 项和为 15,且 531 34aaa, 则 3 a A16 B8 C4 D2 5、 【2019 年高考浙江卷】设 a,bR,数列an满足 a1=a,an+1=an2+b,n N,则 A 当 10 1 ,10 2 ba B 当 10 1 ,10 4 ba C 当 10 2,10ba D 当 10 4,10ba 6、 【2018 年高考全国 I 卷理数】设 n S为等差数列 n a的前
7、n项和,若 324 3SSS, 1 2a ,则 5 a 三年高考真题三年高考真题 第 3 页 / 共 7 页 A12 B10 C10 D12 7、 【2020 年浙江卷】已知数列an满足 (1) = 2 n n n a ,则 S3=_ 8、 【2020 年江苏卷】设an是公差为 d 的等差数列,bn是公比为 q 的等比数列已知数列an+bn的前 n 项和 2 21() n n Snnn N,则 d+q 的值是_ 9、【2019 年高考全国 III 卷理数】 记 Sn为等差数列an的前 n 项和, 121 03aaa , 则 10 5 S S _ 10、 【2019 年高考北京卷理数】设等差数列
8、an的前 n 项和为 Sn,若 a2=3,S5=10,则 a5=_, Sn的最小值为_ 11、 【2019 年高考江苏卷】已知数列 * () n anN是等差数列, n S是其前 n 项和.若 2589 0,27a aaS, 则 8 S的值是_ 12、 【2018 年高考全国 I 卷理数】记 n S为数列 n a的前n项和,若21 nn Sa,则 6 S _ 13、.【2020 年全国 1 卷】.设 n a是公比不为 1 的等比数列, 1 a为 2 a, 3 a的等差中项 (1)求 n a的公比; (2)若 1 1a ,求数列 n na的前n项和 题型一题型一 等差数列及性质等差数列及性质 1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考点18 等差数列与等比数列的基本量学生版 备战2021年新高考数学微专题补充考点精练 考点 18 等差数列 等比数列 基本 学生 备战 2021 高考 数学 专题 补充 精练
链接地址:https://www.77wenku.com/p-162262.html