第19讲 平行四边形(含多边形)(学生版) 备战2021中考数学专题复习分项提升
《第19讲 平行四边形(含多边形)(学生版) 备战2021中考数学专题复习分项提升》由会员分享,可在线阅读,更多相关《第19讲 平行四边形(含多边形)(学生版) 备战2021中考数学专题复习分项提升(7页珍藏版)》请在七七文库上搜索。
1、 1 第第 1919 讲讲 平行四边形平行四边形( (含多边形含多边形) ) 1平行四边形 (1)性质: 平行四边形两组对边分别_ _; 平行四边形对角相等,邻角_ _; 平行四边形对角线互相_ _; 平行四边形是_ _对称图形 (2)判定方法: 定义:两组对边平行且相等的四边形是平行四边形; 两组对边分别_相等_的四边形是平行四边形; 一组对边 的四边形是平行四边形; 两组对角 的四边形是平行四边形; 对角线互相平分的四边形是平行四边形 2多边形及其性质 (1)多边形: 内角和定理:n 边形的内角和等于 ; 外角和定理:n 边形的外角和为 ; 对角线:过 n 边形的一个顶点可引 n3 条对角
2、线,n 边形共有 条对角线 (2)正多边形: 正多边形各边相等,各内角相等,各外角相等; 正 n 边形的每一个内角为(n2)180 n (n3),每一个外角为360 n ; 对称性:所有的正多边形都是轴对称图形,正 n 边形有_n_条对称轴;当 n 是奇数时,是轴对称图形, 不是中心对称图形;当 n 是偶数时,既是轴对称图形又是中心对称图形. 考点 1:多边形内角和计算 2 【例题 1】在一个多边形中,一个内角相邻的外角与其他各内角的和为 600. (1)如果这个多边形是五边形,请求出这个外角的度数; (2)是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明
3、理由 归纳:本题注意隐含条件的挖掘,即邻补角和为 180及凸多边形的一个内角是小于平角的角 考点 2:平行四边形的性质与判定 【例题 2】(2017大庆)如图,以BC为底边的等腰ABC,点D,E,G分别在BC,AB,AC上,且EGBC, DEAC,延长GE至点F,使得BEBF. (1)求证:四边形BDEF为平行四边形; (2)当C45,BD2 时,求D,F两点间的距离 考点 3: 关于平行四边形的综合探究问题 【例题 3】(2018 四川省眉山市 15 分 ) 如图,在四边形 ABCD 中,ACBD 于点 E,AB=AC=BD,点 M 为 BC 中点,N 为线段 AM 上的点,且 MB=MN.
4、 (1)求证:BN 平分ABE; (2)若 BD=1,连结 DN,当四边形 DNBC 为平行四边形时,求线段 BC 的长; 3 (3)如图,若点 F 为 AB 的中点,连结 FN、FM,求证:MFNBDC. 一、选择题: 1. (2018浙江宁波4 分)已知正多边形的一个外角等于 40,那么这个正多边形的边数为( ) A6 B7 C8 D9 2. 在平行四边形 ABCD 中,B=60,那么下列各式中,不能成立的是( ) AD=60 BA=120 CC+D=180 DC+A=180 3. (2018宁波) 如图, 在ABCD 中, 对角线 AC 与 BD 相交于点 O, E 是边 CD 的中点,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第19讲 平行四边形含多边形学生版 备战2021中考数学专题复习分项提升 19 平行四边形 多边形 学生 备战 2021 中考 数学 专题 复习 提升
链接地址:https://www.77wenku.com/p-163598.html