第07讲一元二次方程及其应用(学生版) 备战2021中考数学专题复习分项提升
《第07讲一元二次方程及其应用(学生版) 备战2021中考数学专题复习分项提升》由会员分享,可在线阅读,更多相关《第07讲一元二次方程及其应用(学生版) 备战2021中考数学专题复习分项提升(7页珍藏版)》请在七七文库上搜索。
1、 1 第第 7 7 讲讲 一元二次方程及其应用一元二次方程及其应用 1定义 只含有一个未知数,并且未知数的最高次数是 2,这样的整式方程叫做一元二次方程通常可写成如下的一 般形式:ax 2bxc0,其中 a、b、c 分别叫做二次项系数、一次项系数、常数项 2解法 (1)直接开平方法:方程符合 x 2m(m0)或(xm)2n(n0)的形式; (2)配方法:二次项系数化为 1;移项;配方:方程两边都加上一次项系数一半的平方;原方程写 成 a(xh) 2k 的形式;当 k0 时,直接开平方求解; (3)公式法:化为一般形式;确定 a,b,c 的值;求出 b 24ac 的值;当 b24ac0 时,将
2、a,b, c 的值代入得 x ; (4)因式分解法:将方程右边化为 0;将方程左边进行因式分解;令每个因式为零,得两个一元一次 方程;解这两个一元一次方程,得原方程的两个根 3一元二次方程的根的判别式 对于一元二次方程 ax 2bxc0(a0),其根的判别式为 b24ac(或记为“”) (1)b 24ac0方程有两个不相等的实数根; (2)b 24ac0方程有两个相等的实数根; (3)b 24ac0方程没有实数根; (4)b 24ac0方程有实数根 4一元二次方程的根与系数的关系 若一元二次方程 ax 2bxc0(a0)的两根分别为 x 1,x2,则有 x1x2b a,x 1x2c a 5一元
3、二次方程的实际应用常见类型及关系 (1)增长率问题:设 a 为原来量,m 为平均增长率,n 为增长次数,b 为增长后的量,则 a(1m) nb;当 m 为平均下降率时,n 为下降次数,b 为下降后的量,则有 a(1m) nb. (2)几何图形问题: 面积问题:S长方形ab(a,b 分别表示长和宽); S正方形a 2(a 表示边长); 2 S圆r 2(r 表示圆的半径); 体积问题:V长方体abh(a、b、h 分别表示长、宽、高); V正方体a 3(a 表示边长); V圆锥1 3r 2h(r 表示底面圆的半径,h 表示高); 考点 1:一元二次方程的解法 【例题 1】嘉淇同学用配方法推导一元二次
4、方程 ax 2bxc0(a0)的求根公式时,对于 b24ac0 的情 况,她是这样做的:由于 a0,方程 ax 2bxc0 变形为: x 2b ax c a,第一步 x 2b ax( b 2a) 2c a( b 2a) 2,第二步 (x b 2a) 2b 24ac 4a 2,第三步 x b 2a b 24ac 4a (b 24ac0),第四步 xb b 24ac 2a .第五步 (1)嘉淇的解法从第四步开始出现错误;事实上,当 b 24ac0 时,方程 ax2bxc0(a0)的求根公式 是 xb b 24ac 2a ; (2)用配方法解方程:x 22x240. 归纳:一元二次方程有四种解法:因
5、式分解法、直接开平方法、配方法和公式法 (1)若一元二次方程缺少常数项,且方程的右边为 0,可考虑用因式分解法求解; (2)若一元二次方程可分解因式或缺少一次项,可考虑用因式分解法或直接开平方法求解; (3)若一元二次方程的二次项系数为 1,且一次项的系数是偶数时或常数项非常大时,可考虑用配方法求解; (4)若用以上三种方法都不容易求解时,可考虑用公式法求解 考点 2:一元二次方程的实际应用 3 【例题 2】(2019湖北宜昌10 分)HW 公司 2018 年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共 2800 万块,生产了 2800 万部手机,其中乙类芯片的产量是甲类芯片的 2 倍,
6、丙类芯片的产量比甲、乙两类 芯片产量的和还多 400 万块这些“QL”芯片解决了该公司 2018 年生产的全部手机所需芯片的 10% (1)求 2018 年甲类芯片的产量; (2)HW 公司计划 2020 年生产的手机全部使用自主研发的“QL”系列芯片 从 2019 年起逐年扩大“QL”芯片 的产量,2019 年、2020 年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的 产量平均每年增长的百分数比m%小 1,丙类芯片的产量每年按相同的数量递增.2018 年到 2020 年,丙类芯 片三年的总产量达到 1.44 亿块这样,2020 年的 HW 公司的手机产量比 201
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第07讲 一元二次方程及其应用学生版 备战2021中考数学专题复习分项提升 07 一元 二次方程 及其 应用 学生 备战 2021 中考 数学 专题 复习 提升
链接地址:https://www.77wenku.com/p-163611.html