第3讲 乘法公式和因式分解备战2020中考数学考点举一反三讲练(学生版)
《第3讲 乘法公式和因式分解备战2020中考数学考点举一反三讲练(学生版)》由会员分享,可在线阅读,更多相关《第3讲 乘法公式和因式分解备战2020中考数学考点举一反三讲练(学生版)(5页珍藏版)》请在七七文库上搜索。
1、 1 第第 3 讲讲 乘法公式和因式分解乘法公式和因式分解 一、考点知识梳理 【考点 1 平方差公式】 两数和与这两数差的积,等于它们的平方差 (ab)(ab)a2b2 【考点 2 完全平方公式】 两数的平方和,加上(或者减去)它们的积的两倍等于它们和(或差)的平方 (a b)2a2 2abb2 【考点 3 因式分解】 1把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式 2分解因式与整式乘法的关系:多项式 因式分解 整式乘法 整式的积 3. 分解因式的基本方法 (1) 提公因式法:mambmcm(abc) (2) 运用公式法: 平方差公式:a2b2(ab)(ab) 完全平方
2、公式:a2 2abb2(a b)2 二、考点分析 【考点 1 平方差公式】 【解题技巧】能够运用平方差公式进行多项式乘法运算的必须是两个二项式,两项都能写成平方的形式, 且符号相反反之能够运用平方差公式分解因式的多项式必须是二项式且符号相反 【例 1】(2019 河北沧州中考模拟)若(ab2)2+|a+b+3|0,则 a2b2的值是( ) A1 B1 C6 D6 【举一反三 1-1】(2019 山东青岛模拟)若 k 为任意整数,且 99399 能被 k 整除,则 k 不可能是( ) A50 B100 C98 D97 【举一反三 1-2】(2019 辽宁大连模拟)先化简,再求值: (ab)(ab
3、)b(a2b)b2,其中 a1,b2. 【举一反三 1-3】(2019 河北石家庄中考模拟)计算并观察、探究下列式子 (x1) (x+1) x21 (x1) (x2+x+1) x31 2 (x1) (x3+x2+x+1)x41 (x1) (x4+x3+x2+x+1)x51 (x1) (x5+x4+x3+x2+x+1)x61 由以上规律 (1)填空: (x1) (xn+xn 1+x+1) (2)求:22019+22018+22017+22+2+1 的值 【考点 2 完全平方公式】 【解题技巧】能运用完全平方公式进行多项式乘法运算的,必须是两个数(或差)的平方和的形式,反之 能运用完全平方公式分解
4、因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式, 另一项是这两个数(或式)的积的 2 倍 【例 2】(2019 辽宁锦州中考模拟)如果二次三项次 x216x+m2是一个完全平方式,那么 m 的值是( ) A 8 B4 C2 D 2 【举一反三 2-1】(2019 山东聊城中考模拟)已知 a,b 是ABC 的两边,且 a2b22ab,则ABC 的形状是 ( ) A等腰三角形 B等边三角形 C锐角三角形 D不确定 【举一反三 2-2】(2019 沧州九中模拟)当 st1 2时,代数式 s 22stt2的值为 【举一反三 2-3】 (2019吉林长春中考)先化简,再求值: (
5、2a+1)24a(a1) ,其中 a 【举一反三 2-4】 (2018,江苏南京模拟)先化简,再求值: 2 (21)2(21)3aa,其中2a 【考点 3 因式分解】 【解题技巧】因式分解的一般步骤: (1)如果多项式各项有公因式,应先提取公因式; (2)如果各项没有公因式,可以尝试使用公式法来分解因式,看是否符合平方差公式还是完全平方公式,有 时需考虑用十字交乘法; (3)检查因式分解是否彻底,必须分解到每一个因式不能再分解为止 【例 3】 (2019台湾中考)若多项式 5x2+17x12 可因式分解成(x+a) (bx+c) ,其中 a、b、c 均为整数,则 a+c 之值为何?( ) A1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第3讲 乘法公式和因式分解 备战2020中考数学考点举一反三讲练学生版 乘法 公式 因式分解 备战 2020 中考 数学 考点 举一反三 学生
链接地址:https://www.77wenku.com/p-163722.html