第12讲反比例函数及其应用备战2020中考数学考点举一反三讲练(教师版)
《第12讲反比例函数及其应用备战2020中考数学考点举一反三讲练(教师版)》由会员分享,可在线阅读,更多相关《第12讲反比例函数及其应用备战2020中考数学考点举一反三讲练(教师版)(49页珍藏版)》请在七七文库上搜索。
1、 1 第第 1212 讲讲 反比例函数及其应用反比例函数及其应用 一、考点知识梳理 【考点【考点 1 1 反比例函数的图像及性质】反比例函数的图像及性质】 1.反比例函数的概念:1 1一般地,如果变量 y 与变量 x 之间的函数关系可以表示成 yk x(k 是常数,且 k 0)的形式,则称 y 是 x 的反比例函数,其中 x 是自变量,y 是函数,自变量 x 的取值范围是不等于 0 的一 切实数。 2.函数图像的性质: 对于反比例函数 yk x(k0), k0 时, 反比例函数图像经过第一、 三象限(x, y 同号), 在每个象限内,y 随 x 的增大而减小,关于直线 yx 对称;k0 时,反
2、比例函数图像经过第二、四象限 (x,y 异号),在每个象限内,y 随 x 的增大而增大关于直线 yx 对称。 【考点【考点 2 2 反比例函数的实际应用】反比例函数的实际应用】 1.反比例函数表达式的确定的步骤: (1)设所求的反比例函数为 yk x(k0); (2)根据已知条件列出含 k 的方程; (3)由代入法求待定系数 k 的值; (4)把 k 代入函数表达式 yk x中 2.求表达式的两种途径: (1)根据问题中两个变量间的数量关系直接写出; (2)在已知两个变量 x,y 具有反比例关系 yk x(x0)的前提下,根据一对 x,y 的值,列出一个关于 k 的方 程,求得 k 的值,确定
3、出函数的表达式 【考点【考点 3 3 反比例函数的图像与几何图形的关系】反比例函数的图像与几何图形的关系】 反比例函数与几何图形的面积问题,是最常见的数形结合问题,首先要根据题意画出草图,结合图形分析 其中的几何图形的特点,再求出面积等相关数据 【考点【考点 4 4 反比例函数的图像与其它函数的关系】反比例函数的图像与其它函数的关系】 反比例函数与一次函数、反比例函数与二次函数是近几年中考的常考题型,需要把每个函数的性质了解清 楚,点的坐标适合每个函数的表达式,然后再结合图像特点,总结规律。 二、考点分析 【考点【考点 1 1 反比例函数的图像及性质】反比例函数的图像及性质】 2 【解题技巧】
4、1.对于反比例函数 yk x(k 是常数,且 k0)k 的几何意义: 设 P(x,y)是反比例函数 yk x图像上任一点,过点 P 作 PMx 轴于 M,PNy 轴于 N,则 S 矩形 PNOMPMPN |y|x|xy|k|. 2.利用图象解决问题,从图上获取有用的信息,是解题的关键所在已知点在图象上,那么点一定满足这 个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上还能利用图象直接 比较函数值或是自变量的大小将数形结合在一起,是分析解决问题的一种好方法 【例 1】 (2019 安徽中考)已知点A(1,3)关于x轴的对称点A在反比例函数y的图象上,则实数 k的值为(
5、) A3 B C3 D 【答案】A 【分析】先根据关于x轴对称的点的坐标特征确定A的坐标为(1,3) ,然后把A的坐标代入y中即 可得到k的值 【解答】解:点A(1,3)关于x轴的对称点A的坐标为(1,3) , 把A(1,3)代入y得k133 故选:A 【举一反三举一反三 1-1】 (2019 海南中考)如果反比例函数y(a是常数)的图象在第一、三象限,那么a 的取值范围是( ) Aa0 Ba0 Ca2 Da2 【答案】D 【分析】反比例函数y图象在一、三象限,可得k0 【解答】解:反比例函数y(a是常数)的图象在第一、三象限, 3 a20, a2 故选:D 【举一反三举一反三 1-2】 (2
6、019 江苏徐州中考)若A(x1,y1) 、B(x2,y2)都在函数y的图象上,且x10 x2,则( ) Ay1y2 By1y2 Cy1y2 Dy1y2 【答案】A 【分析】根据题意和反比例函数的性质可以解答本题 【解答】解:函数y, 该函数图象在第一、三象限、在每个象限内y随x的增大而减小, A(x1,y1) 、B(x2,y2)都在函数y的图象上,且x10 x2, y1y2, 故选:A 【举一反三举一反三 1-3】 (2019河北石家庄中考模拟)定义新运算:ab=例如:45= ,4( 5)= 则函数 y=2x(x0)的图象大致是( ) A B C D 【答案】D 【分析】 根据题意可得 y=
7、2x=, 再根据反比例函数的性质可得函数图象所在 象限和形状,进而得到答案 4 【解答】 :由题意得:y=2x=, 当 x0 时,反比例函数 y= 在第一象限, 当 x0 时,反比例函数y= 在第二象限, 又因为反比例函数图象是双曲线,因此 D 选项符合, 故选:D 【举一反三举一反三 1-4】 (2019 吉林中考)已知y是x的反比例函数,并且当x2 时,y6 (1)求y关于x的函数解析式; (2)当x4 时,求y的值 【分析】 (1)直接利用待定系数法求出反比例函数解析式即可; (2)直接利用x4 代入求出答案 【解答】解: (1)y是x的反例函数, 所以,设, 当x2 时,y6 所以,k
8、xy12, 所以,; (2)当x4 时,y3 【考点【考点 2 2 反比例函数的实际应用】反比例函数的实际应用】 【解题技巧】利用反比例函数解决实际问题,首先是建立函数模型一般地,建立函数模型有两种思路: 一是通过问题提供的信息, 知道变量之间的函数关系, 在这种情况下, 可先设出函数的表达式 yk x(k0), 再由已知条件确定表达式中 k 的取值即可;二是问题本身的条件中不确定变量间是什么关系,此时要通过 分析找出变量的关系并确定函数表达式 【例 2】 (2019 湖北孝感中考)公元前 3 世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳 为“杠杆原理” ,即:阻力阻力臂动力动力
9、臂小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别 是 1200N和 0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是( ) AF BF CF DF 【答案】B 5 【分析】直接利用阻力阻力臂动力动力臂,进而将已知量据代入得出函数关系式 【解答】 解: 阻力阻力臂动力动力臂 小伟欲用撬棍撬动一块石头, 已知阻力和阻力臂分别是 1200N 和 0.5m, 动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:12000.5Fl, 则F 故选:B 【举一反三举一反三 2-1】 (2019 浙江温州中考)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米) 的对应数
10、据如下表,根据表中数据,可得y关于x的函数表达式为( ) 近视眼镜的度 数y(度) 200 250 400 500 1000 镜片焦距x (米) 0.50 0.40 0.25 0.20 0.10 Ay By Cy Dy 【答案】A 【分析】直接利用已知数据可得xy100,进而得出答案 【解答】解:由表格中数据可得:xy100, 故y关于x的函数表达式为:y 故选:A 【举一反三举一反三 2-2】 (2019 河北中考)长为 300m的春游队伍,以v(m/s)的速度向东行进,如图 1 和图 2, 当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均 为 2
11、v(m/s) ,当甲返回排尾后,他及队伍均停止行进设排尾从位置O开始行进的时间为t(s) ,排头与O 的距离为S头(m) (1)当v2 时,解答: 求S头与t的函数关系式(不写t的取值范围) ; 当甲赶到排头位置时,求S头的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m) ,求S 6 甲与t的函数关系式(不写t的取值范围) (2)设甲这次往返队伍的总时间为T(s) ,求T与v的函数关系式(不写v的取值范围) ,并写出队伍在此 过程中行进的路程 【分析】 (1)排头与O的距离为S头(m) 等于排头行走的路程+队伍的长 300,而排头行进的时间也是t (s) ,速度是 2m/s,可以
12、求出S头与t的函数关系式; 甲赶到排头位置的时间可以根据追及问题的数量关系得出,代入求S即可;在甲从排头返回到排尾过程 中,设甲与位置O的距离为S甲(m)是在S的基础上减少甲返回的路程,而甲返回的时间(总时间t减去 甲从排尾赶到排头的时间) ,于是可以求S甲与t的函数关系式; (2)甲这次往返队伍的总时间为T(s) ,是甲从排尾追到排头用的时间与从排头返回排尾用时的和,可以 根据追及问题和相遇问题的数量关系得出结果;在甲这次往返队伍的过程中队伍行进的路程队伍速度 返回时间 【解答】解: (1)排尾从位置O开始行进的时间为t(s) ,则排头也离开原排头t(s) , S头2t+300 甲从排尾赶到
13、排头的时间为 300(2vv)300v3002150 s,此时S头2t+300600 m 甲返回时间为: (t150)s S甲S头S甲回2150+3004(t150)4t+1200; 因此,S头与t的函数关系式为S头2t+300,当甲赶到排头位置时,求S的值为 600m,在甲从排头返回到 排尾过程中,S甲与t的函数关系式为S甲4t+1200 (2)Tt追及+t返回+, 在甲这次往返队伍的过程中队伍行进的路程为:v(T150)v(150)400150v; 因此T与v的函数关系式为:T,此时队伍在此过程中行进的路程为(400150v)m 【举一反三举一反三 2-3】 (2019 浙江杭州中考)方方
14、驾驶小汽车匀速地从A地行驶到B地,行驶里程为 480 千米, 设小汽车的行驶时间为t(单位:小时) ,行驶速度为v(单位:千米/小时) ,且全程速度限定为不超过 120 千米/小时 (1)求v关于t的函数表达式; 7 (2)方方上午 8 点驾驶小汽车从A地出发 方方需在当天 12 点 48 分至 14 点(含 12 点 48 分和 14 点)间到达B地,求小汽车行驶速度v的范围 方方能否在当天 11 点 30 分前到达B地?说明理由 【分析】 (1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解; (2)8 点至 12 点 48 分时间长为小时,8 点至 14 点时间长为 6
15、小时,将它们分别代入v关于t的函 数表达式,即可得小汽车行驶的速度范围; 8 点至 11 点 30 分时间长为小时,将其代入v关于t的函数表达式,可得速度大于 120 千米/时,从而 得答案 【解答】解: (1)vt480,且全程速度限定为不超过 120 千米/小时, v关于t的函数表达式为:v, (0t4) (2)8 点至 12 点 48 分时间长为小时,8 点至 14 点时间长为 6 小时 将t6 代入v得v80;将t代入v得v100 小汽车行驶速度v的范围为:80v100 方方不能在当天 11 点 30 分前到达B地理由如下: 8 点至 11 点 30 分时间长为小时,将t代入v得v12
16、0 千米/小时,超速了 故方方不能在当天 11 点 30 分前到达B地 【考点【考点 3 3 反比例函数的图像与几何图形的关系】反比例函数的图像与几何图形的关系】 【解题技巧】1.常见的有(1)双曲线与三角形的关系(2)双曲线与四边形的关系(3)双曲线与圆的关系 (4)两条双曲线之间的关系 2.在平面直角坐标系中与几何图形相联系时,通常要构造一个三角形,以坐标轴上的边为底,相对顶点的 横坐标(或纵坐标)的绝对值为高;如果没有坐标轴上的边,则用坐标轴将其分割后求解 【例 3】 (2019 重庆中考)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角 线BDx轴,反比例函数
17、y(k0,x0)的图象经过矩形对角线的交点E若点A(2,0) ,D(0,4) , 则k的值为( ) 8 A16 B20 C32 D40 【答案】B 【分析】 根据平行于x轴的直线上任意两点纵坐标相同, 可设B(x, 4) 利用矩形的性质得出E为BD中点, DAB90根据线段中点坐标公式得出E(x,4) 由勾股定理得出AD 2+AB2BD2,列出方程 22+42+(x2)2+42x2,求出 x,得到E点坐标,代入y,利 用待定系数法求出k 【解答】解:BDx轴,D(0,4) , B、D两点纵坐标相同,都为 4, 可设B(x,4) 矩形ABCD的对角线的交点为E, E为BD中点,DAB90 E(x
18、,4) DAB90, AD 2+AB2BD2, A(2,0) ,D(0,4) ,B(x,4) , 2 2+42+(x2)2+42x2, 解得x10, E(5,4) 反比例函数y(k0,x0)的图象经过点E, k5420 故选:B 【举一反三举一反三 3-1】 (2019河北沧州中考模拟)如图,AOB为等边三角形,点B的坐标为(2,0) ,过点C (2,0)作直线l交AO于点D,交AB于E,点E在反比例函数0)的图象上,若ADE和DCO 9 (即图中两阴影部分)的面积相等,则k值为( ) A B C D 【答案】D 【分析】连接AC,先由等边三角形及等腰三角形的性质判断出ABC是直角三角形,再由
19、SADESDCO,SAEC SADE+SADC,SAOCSDCO+SADC,可得出SAECSAOC,故可得出AE的长,再由中点坐标公式求出E点坐标, 把点E代入反比例函数y即可求出k的值 【解答】解:连接AC 点B的坐标为(2,0) ,AOB为等边三角形, AOOC2, OCAOAC, AOB60, ACO30,B60, BAC90, 点A的坐标为(1,) , SADESDCO,SAECSADE+SADC,SAOCSDCO+SADC, SAECSAOCAEACCO, 即 AE22, AE1 E点为AB的中点(,) 把E点(,)代入y得,k() 故选:D 10 【举一反三举一反三 3-2】 (2
20、019深圳)如图,在 RtABC中,ABC90,C(0,3) ,CD3AD,点A在反比例 函数y图象上,且y轴平分ACB,求k 【答案】 【分析】要求k得值,通常可求A的坐标,可作x轴的垂线,构造相似三角形,利用CD3AD和C(0,3) 可以求出A的纵坐标,再利用三角形相似,设未知数,由相似三角形对应边成比例,列出方程,求出待定 未知数,从而确定点A的坐标,进而确定k的值 【解答】解:过A作AEx轴,垂足为E, C(0,3) , OC3, 可证ADECDO, , AE1; 又y轴平分ACB,COBD, BOOD, ABC90, ABECOD, 设DEn,则BOOD3n,BE7n, , 11 n
21、 OE4n A(,1) k 故答案为: 【举一反三举一反三 3-3】 (2019 河北孝感中考)如图,双曲线y(x0)经过矩形OABC的顶点B,双曲线y (x0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF若OD:OB2:3,则BEF 的面积为 【答案】 【分析】设D(2m,2n) ,根据题意A(3m,0) ,C(0,3n) ,B(3m,3n) ,即可得出 93m3n,k2m2n 4mn,解得mn1,由E(3m,n) ,F(m,3n) ,求得BE、BF,然后根据三角形面积公式得到SBEF BEBFmn 【解答】解:设D(2m,2n) , OD:OB2:3, A(3m,0) ,
22、C(0,3n) , B(3m,3n) , 12 双曲线y(x0)经过矩形OABC的顶点B, 93m3n, mn1, 双曲线y(x0)经过点D, k4mn 双曲线y(x0) , E(3m,n) ,F(m,3n) , BE3nnn,BF3mmm, SBEFBEBFmn 故答案为 【举一反三举一反三 3-4】 (2019辽宁大连中考模拟)如图,点P在双曲线y(x0)上,以P为圆心的P与 两坐标轴都相切,点E为y轴负半轴上的一点,过点P作PFPE交x轴于点F,若OFOE6,则k的值 是 【答案】9 【分析】过P点作x轴、y轴的垂线,垂足为A、B,根据P与两坐标轴都相切可知,PAPB,由APB EPF9
23、0可证BPEAPF,得BEAF,利用OFOE6,求圆的半径,根据kOAPA求解 【解答】解:如图,过P点作x轴、y轴的垂线,垂足为A、B, P与两坐标轴都相切, PAPB,四边形OAPB为正方形, APBEPF90, BPEAPF, RtBPERtAPF, 13 BEAF, OFOE6, (OA+AF)(BEOB)6, 即 2OA6, 解得OA3, kOAPA339 故答案为:9 【举一反三举一反三 3-5】 (2019兰州)如图,在平面直角坐标系xOy中,反比例函数y(k0)的图象经过等 边三角形BOC的顶点B,OC2,点A在反比例函数图象上,连接AC,OA (1)求反比例函数y(k0)的表
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第12讲 反比例函数及其应用 备战2020中考数学考点举一反三讲练教师版 12 反比例 函数 及其 应用 备战 2020 中考 数学 考点 举一反三 教师版
链接地址:https://www.77wenku.com/p-163753.html