第09讲 不等式(组)及其应用备战2020中考数学考点举一反三讲练(教师版)
《第09讲 不等式(组)及其应用备战2020中考数学考点举一反三讲练(教师版)》由会员分享,可在线阅读,更多相关《第09讲 不等式(组)及其应用备战2020中考数学考点举一反三讲练(教师版)(25页珍藏版)》请在七七文库上搜索。
1、 1 第第 09 讲讲 不等式(组)及其应用不等式(组)及其应用 一、考点知识梳理 【考点 1 不等式的概念及性质】 1不等式:一般地,用不等号连接的式子叫做不等式 2不等式的解:能使不等式成立的未知数的值叫做不等式的解;一个含有未知数的不等式的解的全体,叫 做不等式的解集 3不等式的基本性质: 性质 1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; 性质 2:不等式两边同乘(或除以)以一个正数,不等号的方向不变; 性质 3:不等式两边同乘(或除以)以一个负数,不等号的方向改变 【考点【考点 2 2 一元一次不等式及其解法】 1一元一次不等式:只含有一个未知数,且未知数的
2、次数是 1 的不等式,叫做一元一次不等式,其一般形 式是 axb0 或 axb0(a0) 2解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为 1. 3一元一次不等式的解集在数轴上的表示 解集在数轴上的表示 xa xa xa 【考点【考点 3 3 一元一次不等式组及其解法】 1一元一次不等式组:含有相同未知数的若干一元一次不等式(一般是两个)所组成的不等式组叫做一元 一次不等式组 2一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分 3解一元一次不等式组的步骤:(1)先求出各个不等式的解集;(2)再利用数轴找它们的公共部分;(
3、3)写 出不等式组的解集 4.求不等式(组)的特殊解,一方面要先求不等式(组)的解集,然后在解集中找特殊解 【考点【考点 4 4 一元一次不等式(组)的应用】 列不等式(组)解应用题的步骤:(1)找出实际问题中的不等关系,设定未知数,列出不等式(组);(2)解不 等式(组);(3)从不等式(组)的解集中求出符合题意的答案 二、考点分析 2 【考点【考点 1 不等式的概念及性质】 【解题技巧】不等式的基本性质是不等式变形的重要依据,性质 3不等号的方向会发生改变这是不等式 独有的性质 (1)不等式的基本性质 不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即: 若
4、 ab,那么 ambm; 不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即: 若 ab,且 m0,那么 ambm 或; 不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即: 若 ab,且 m0,那么 ambm 或; (2)不等式的变形:两边都加、减同一个数,具体体现为“移项” ,此时不等号方向不变,但移项要变 号;两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变 【规律方法】 1应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号 的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于 0 进行分
5、类讨论 2不等式的传递性:若 ab,bc,则 ac 【例 1】 (2019 上海中考)如果 mn,那么下列结论错误的是( ) Am+2n+2 Bm2n2 C2m2n D2m2n 【答案】D 【分析】根据不等式的性质即可求出答案 【解答】解:mn, 2m2n, 故选:D 【举一反三举一反三1-1】 (2019 山东淄博中考模拟)若 xy,则下列式子中错误的是( D ) Ax3y3 B3x3y Cx3y3 D3x3y 【答案】D 【分析】根据不等式的性质即可求出答案 【解答】A 是在不等式 xy 的两边都减去 3,是正确的 B 是在不等式 xy 的两边都乘以 3,是正确的 3 C 是在不等式 xy
6、 的两边都加上 3,是正确的 D 是在不等式 xy 的两边都乘以-3,是错误的 故选:D 【举一反三举一反三1-2】 (2019 辽宁葫芦岛中考模拟)四个小朋友玩 跷跷板,他们的体重分别为 P、Q、R、S, 如图 3 所示,则他们的体重大小关系是( ) A PRSQ B QSPR C SPQR D SPRQ 【答案】D 【分析】根据不等式的性质即可求出答案 【解答】跷跷板不平衡时是不等量关系,要注意较低的那边重些,解决此类问题常通过不等式(组)来转换, 由图知 SP,PR,P+RQ+S,所以 SPRS 选 D 【举一反三举一反三1-3】 (2019广东佛山中考模拟)现有不等式的性质: 在不等式
7、的两边都加上(或减去)同一个整式,不等号的方向不变; 在不等式的两边都乘以同一个数(或整式) ,乘的数(或整式)为正时不等号的方向不变, 乘的数(或整式)为负时不等式的方向改变 请解决以下两个问题: (1)利用性质比较 2a 与 a 的大小(a0) ; (2)利用性质比较 2a 与 a 的大小(a0) 【分析】根据不等式的性质即可求出答案 【解答】 (1)a0 时,a+aa+0,即 2aa, a0 时,a+aa+0,即 2aa; (2)a0 时,21,得 2a1a,即 2aa; a0 时,21,得 2a1a,即 2aa 【考点【考点 2 2 一元一次不等式及其解法】 【解题技巧】(1)已知一元
8、一次不等式(组)的解集,确定其中字母的取值范围的方法是:逆用不等式(组)的 解集确定;分类讨论确定;从反面求解确定;借助于数轴确定 4 (2)根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:去 分母;去括号;移项;合并同类项;化系数为 1 以上步骤中,只有去分母和化系数为 1 可能用到性质 3,即可能变不等号方向,其他都不会改变不等 号方向 注意:符号“”和“”分别比“”和“”各多了一层相等的含义,它们是不等号与等号合写形式 【例 2】 (2019 辽宁大连中考)不等式 5x+13x1 的解集在数轴上表示正确的是( ) A B C D 【答案】B 【分析】
9、先求出不等式的解集,再在数轴上表示出来即可 【解答】解:5x+13x1, 移项得 5x3x11, 合并同类项得 2x2, 系数化为 1 得,x1, 在数轴上表示为: 故选:B 【举一反三举一反三2-1】 (2019呼和浩特)若不等式12x 的解集中 x 的每一个值,都能使关于 x 的不 等式 3(x1)+55x+2(m+x)成立,则 m 的取值范围是( ) Am Bm Cm Dm 【答案】C 【分析】求出不等式12x 的解,求出不等式 3(x1)+55x+2(m+x)的解集,得出关于 m 的不等式,求出 m 即可 【解答】解:解不等式12x 得:x, 不等式12x 的解集中 x 的每一个值,
10、都能使关于 x 的不等式 3 (x1) +55x+2 (m+x) 成立, x, 5 , 解得:m, 故选:C 【举一反三举一反三2-2】 (2019长春)不等式x+20 的解集为( ) Ax2 Bx2 Cx2 Dx2 【答案】D 【分析】直接进行移项,系数化为 1,即可得出 x 的取值 【解答】解:移项得:x2 系数化为 1 得:x2 故选:D 【举一反三举一反三2-3】 (2019 吉林中考)不等式 3x21 的解集是 【答案】x1 【分析】利用不等式的基本性质,将两边不等式同时加上 2 再除以 3,不等号的方向不变 【解答】解:3x21, 3x3, x1, 原不等式的解集为:x1 故答案为
11、 x1 【举一反三举一反三2-4】 (2019 河北保定中考模拟)定义新运算:对于任意实数 a,b,都有 aba(ab)1, 等式右边是通常的加法、减法及乘法运算,比如:252(25)12(3)1615.若 3x 的值小于 13,求 x 的取值范围,并在如图所示的数轴上表示出来 【分析】利用不等式的基本性质,按照解不等式的步骤给以变形 【解答】由 3x 小于 13,得 3(3x)11. 在数轴上表示如图 【举一反三举一反三2-5】 (2019 江苏南京中考)已知一次函数 y1kx+2(k 为常数,k0)和 y2x3 (1)当 k2 时,若 y1y2,求 x 的取值范围 6 (2)当 x1 时,
12、y1y2结合图象,直接写出 k 的取值范围 【分析】 (1)解不等式2x+2x3 即可; (2)先计算出 x1 对应的 y2的函数值,然后根据 x1 时,一次函数 y1kx+2(k 为常数,k0)的图象 在直线 y2x3 的上方确定 k 的范围 【解答】解: (1)k2 时,y12x+2, 根据题意得2x+2x3, 解得 x; (2)当 x1 时,yx32,把(1,2)代入 y1kx+2 得 k+22,解得 k4, 当4k0 时,y1y2; 当 0k1 时,y1y2 【考点【考点 3 3 一元一次不等式组及其解法】 【解题技巧】解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集
13、的公共部分,利 用数轴可以直观地表示不等式组的解集方法与步骤:求不等式组中每个不等式的解集;利用数轴求 公共部分 解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到 【例 3】 (2019 山西中考)不等式组的解集是( ) Ax4 Bx1 C1x4 Dx1 【答案】A 【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集 【解答】解:, 由得:x4, 由得:x1, 不等式组的解集为:x4, 故选:A 【举一反三举一反三3-1】 (2019 甘肃中考)不等式组的最小整数解是 【答案】0 【分析】求出不等式组的解集,确定出最小整数解即可 7 【解答】解:不等式组整理得:, 不
14、等式组的解集为1x2, 则最小的整数解为 0, 故答案为:0 【举一反三举一反三3-2】 (2019 河南中考)不等式组的解集是 【答案】x2 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无 解了确定不等式组的解集 【解答】解:解不等式1,得:x2, 解不等式x+74,得:x3, 则不等式组的解集为 x2, 故答案为:x2 【举一反三举一反三3-3】 (2019 湖北黄石中考)若点 P 的坐标为(,2x9) ,其中 x 满足不等式组 ,求点 P 所在的象限 【分析】先求出不等式组的解集,进而求得 P 点的坐标,即可求得点 P 所在的象限 【解答】解
15、:, 解得:x4, 解得:x4, 则不等式组的解是:x4, 1,2x91, 点 P 的坐标为(1,1) , 点 P 在的第四象限 【举一反三举一反三3-4】 (2019 天津中考)解不等式组 请结合题意填空,完成本题的解答 8 ()解不等式,得 ; ()解不等式,得 ; ()把不等式和的解集在数轴上表示出来; ()原不等式组的解集为 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无 解了确定不等式组的解集 【解答】解: ()解不等式,得 x2; ()解不等式,得 x1; ()把不等式和的解集在数轴上表示出来; ()原不等式组的解集为2x1 故答案为:
16、x2,x1,2x1 【举一反三举一反三3-5】 (2019 浙江温州中考)不等式组的解为 【分析】分别求出各不等式的解集,再求出其公共解集即可 【解答】解:, 由得,x1, 由得,x9, 故此不等式组的解集为:1x9 故答案为:1x9 【考点【考点 4 4 一元一次不等式(组)的应用】 【解题技巧】 (1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得 到实际问题的答案 (2)列不等式解应用题需要以“至少” 、 “最多” 、 “不超过” 、 “不低于”等词来体现问题中的不等关系因 此,建立不等式要善于从“关键词”中挖掘其内涵 9 (3)列一元一次不等式解决实际问题
17、的方法和步骤: 弄清题中数量关系,用字母表示未知数 根据题中的不等关系列出不等式 解不等式,求出解集 写出符合题意的解 【例 4】 (2019哈尔滨)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动 使用若购买 3 副围棋和 5 副中国象棋需用 98 元;若购买 8 副围棋和 3 副中国象棋需用 158 元; (1)求每副围棋和每副中国象棋各多少元; (2)寒梅中学决定购买围棋和中国象棋共 40 副,总费用不超过 550 元,那么寒梅中学最多可以购买多少 副围棋? 【分析】 (1)设每副围棋 x 元,每副中国象棋 y 元,根据题意得:,求解即可; (2)设购买围棋 z
18、副,则购买象棋(40z)副,根据题意得:16z+10(40z)550,即可求解; 【解答】解: (1)设每副围棋 x 元,每副中国象棋 y 元, 根据题意得:, , 每副围棋 16 元,每副中国象棋 10 元; (2)设购买围棋 z 副,则购买象棋(40z)副, 根据题意得:16z+10(40z)550, z25, 最多可以购买 25 副围棋; 【举一反三举一反三4-1】 (2019台湾)阿慧在店内购买两种蛋糕当伴手礼,如图为蛋糕的价目表已知阿慧购买 10 盒蛋糕,花费的金额不超过 2500 元若他将蛋糕分给 75 位同事,每人至少能拿到一个蛋糕,则阿慧花 多少元购买蛋糕?( ) 10 A21
19、50 B2250 C2300 D2450 【答案】D 【分析】可设阿慧购买 x 盒桂圆蛋糕,则购买(10 x)盒金爽蛋糕,根据不等关系:购买 10 盒蛋糕, 花费的金额不超过 2500 元;蛋糕的个数大于等于 75 个,列出不等式组求解即可 【解答】解:设阿慧购买 x 盒桂圆蛋糕,则购买(10 x)盒金爽蛋糕,依题意有 , 解得 2x3, x 是整数, x3, 3503+200(103) 1050+1400 2450(元) 答:阿慧花 2450 元购买蛋糕 故选:D 【举一反三举一反三4-2】 (2015 .河北中考)水平放置的容器内原有 210 mm 高的水,如图,将若干个球逐一放入 该容器
20、中,每放入一个大球水面就上升 4 mm,每放入一个小球水面就上升 3 mm,假定放入容器中的所有球 完全浸没水中且水不溢出设水面高为 y mm. (1)只放入大球,且个数为 x大,求 y 与 x大的函数关系式;(不必写出 x大的范围) (2)仅放入 6 个大球后,开始放入小球,且小球个数为 x小 求 y 与 x小的函数关系式;(不必写出 x小的范围) 限定水面高不超过 260 mm,最多能放入几个小球? 【分析】水面高度与球的个数是一次函数关系 【解答】(1)y4x大210; (2)当 x大6 时,y46210234, y3x小234; 依题意,得 3x小234260, 11 解得 x小82
21、3, x小为自然数,x小最大为 8, 即最多能放入 8 个小球 【举一反三举一反三4-3】 (2019 湖北孝感中考)为加快“智慧校园”建设,某市准备为试点学校采购一批 A、B 两种型号的一体机 经过市场调查发现, 今年每套 B 型一体机的价格比每套 A 型一体机的价格多 0.6 万元, 且用 960 万元恰好能购买 500 套 A 型一体机和 200 套 B 型一体机 (1)求今年每套 A 型、B 型一体机的价格各是多少万元? (2)该市明年计划采购 A 型、B 型一体机共 1100 套,考虑物价因素,预计明年每套 A 型一体机的价格比 今年上涨 25%, 每套 B 型一体机的价格不变, 若
22、购买 B 型一体机的总费用不低于购买 A 型一体机的总费用, 那么该市明年至少需要投入多少万元才能完成采购计划? 【分析】 (1)直接利用今年每套 B 型一体机的价格比每套 A 型一体机的价格多 0.6 万元,且用 960 万元恰 好能购买 500 套 A 型一体机和 200 套 B 型一体机,分别得出方程求出答案; (2)根据题意表示出总费用进而利用一次函数增减性得出答案 【解答】解: (1)设今年每套 A 型一体机价格为 x 万元,每套 B 型一体机的价格为 y 万元, 由题意可得:, 解得:, 答:今年每套 A 型的价格各是 1.2 万元、B 型一体机的价格是 1.8 万元; (2)设该
23、市明年购买 A 型一体机 m 套,则购买 B 型一体机(1100m)套, 由题意可得:1.8(1100m)1.2(1+25%)m, 解得:m600, 设明年需投入 W 万元, W1.2(1+25%)m+1.8(1100m) 0.3m+1980, 0.30, W 随 m 的增大而减小, m600, 当 m600 时,W 有最小值0.3600+19801800, 故该市明年至少需投入 1800 万元才能完成采购计划 12 【举一反三举一反三4-4】 (2019 福建中考)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建 了日废水处理量为 m 吨的废水处理车间,对该厂工业废水进行无害化处
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第09讲 不等式组及其应用 备战2020中考数学考点举一反三讲练教师版 09 不等式 及其 应用 备战 2020 中考 数学 考点 举一反三 教师版
链接地址:https://www.77wenku.com/p-163757.html