专题25圆的问题(学生版) 备战2020中考数学复习点拨(共34讲)
《专题25圆的问题(学生版) 备战2020中考数学复习点拨(共34讲)》由会员分享,可在线阅读,更多相关《专题25圆的问题(学生版) 备战2020中考数学复习点拨(共34讲)(11页珍藏版)》请在七七文库上搜索。
1、 1 专题专题 25 圆的问题圆的问题 一、与圆有关的概念与规律一、与圆有关的概念与规律 1圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。圆的半 径或直径决定圆的大小,圆心决定圆的位置。 2.圆的性质: (1)圆具有旋转不变性; (2)圆具有轴对称性; (3)圆具有中心对称性。 3.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。 4推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 5圆心角:顶点在圆心上的角叫做圆心角。圆心角的度数等于它所对弧的度数。 6在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。 在
2、同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也 相等。 在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也 相等。 7.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。 8.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半 9半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径 10. 点和圆的位置关系: 点在圆内点到圆心的距离小于半径 点在圆上点到圆心的距离等于半径 点在圆外点到圆心的距离大于半径 11. 过三点的圆:不在同一直线上的三个点确定一个圆。 12. 外接圆和外心:
3、经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。 外接圆的圆心,叫做三角形的外心。外心是三角形三条边垂直平分线的交点。外心到三角形三个顶点的距 离相等。 13若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接 圆。 专题知识回顾专题知识回顾 2 14圆内接四边形的特征: 圆内接四边形的对角互补; 圆内接四边形任意一个外角等于它的内对角。 15.直线与圆有 3 种位置关系: 如果O 的半径为 r,圆心 O 到直线 的距离为 d,那么 直线 和O 相交; 直线 和O 相切; 直线 和O 相离。 16.和三角形三边都相切的圆叫做这个三角形的内切圆,其
4、圆心称为内心。内心是三角形三个角的角 平分线的交点。内心到三角形三边的距离相等。 17.切线的性质 (1)经过切点垂直于这条半径的直线是圆的切线。 (2)经过切点垂直于切线的直线必经过圆心。 (3)圆的切线垂直于经过切点的半径。 18.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。 19.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,并且圆心和这一点的连线平分两条切 线的夹角。 20设圆 1 O的半径为 1 r,圆 2 O的半径为 2 r,两个圆的圆心距 12 |dOO,则: 两圆外离 12 drr; 两圆外切 12 drr; 两圆相交 1212 |rrdrr;
5、两圆内切 12 |drr; 两圆内含 12 |drr 21.圆中几个关键元素之间的相互转化 弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 22.与圆有关的公式 设圆的周长为 r,则: l lrd lrd lrd 3 (1)求圆的直径公式 d=2r (2)求圆的周长公式 C=2r (3)求圆的面积公式 S=r 2 二、解题要领二、解题要领 1.判定切线的方法: (1)若切点明确,则“连半径,证垂直” 。常见手法有全等转化;平行转化;直径转化;中线转化等;有 时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径” 。常见手法有角平分线
6、定理;等腰三角形三线合一,隐藏角平 分线; 总而言之,要完成两个层次的证明: 直线所垂直的是圆的半径(过圆上一点) ; 直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此 及彼的联想、要总结常添加的辅助线. 2.与圆有关的计算: 计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式 复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是 要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已 知,解决问题。其中重要而常见的数学思想方法有: (
7、1)构造思想:构建矩形转化线段;构建“射影定理”基本图研究线段(已知任意两条线段可求其它 所有线段长) ;构造垂径定理模型:弦长一半、弦心距、半径;构造勾股定理模型;构造三角函数. (2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程, 解决问题。 (3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基 本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。 【例题【例题 1 1】 (】 (20192019山东省滨州市)山东省滨州市)如图,AB为O的直径,C,D为O上两点,若BCD40,则AB
8、D 的大小为( ) 专题典型题考法及解析专题典型题考法及解析 4 A60 B50 C40 D20 【例题【例题 2 2】 (】 (20192019南京)南京)如图,PA.PB是O的切线,A.B为切点,点 C.D在O上若P102,则A+ C 【例题【例题 3 3】 (】 (20192019甘肃武威)甘肃武威)如图,在ABC中,ABAC,BAC120,点D在BC边上,D经过点A和 点B且与BC边相交于点E (1)求证:AC是D的切线; (2)若CE2,求D的半径 【例题【例题 4 4】 (】 (20192019江苏苏州)江苏苏州)如图,AE为O的直径,D是弧BC的中点BC与AD,OD分别交于点E,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题25 圆的问题学生版 备战2020中考数学复习点拨(共34讲) 专题 25 问题 学生 备战 2020 中考 数学 复习 点拨 34
链接地址:https://www.77wenku.com/p-163781.html