专题14 图形变换和类比探究类几何压轴综合问题-突破中考数学压轴之学霸秘笈大揭秘(教师版)
《专题14 图形变换和类比探究类几何压轴综合问题-突破中考数学压轴之学霸秘笈大揭秘(教师版)》由会员分享,可在线阅读,更多相关《专题14 图形变换和类比探究类几何压轴综合问题-突破中考数学压轴之学霸秘笈大揭秘(教师版)(47页珍藏版)》请在七七文库上搜索。
1、 1 2019 版突破中考数学压轴之学霸秘笈大揭秘版突破中考数学压轴之学霸秘笈大揭秘 专题专题 14 图形变换和类比探究类几何压轴综合问题图形变换和类比探究类几何压轴综合问题 【类型综述】 本节内容每年中考都会选择一种变换作为压轴题的背景素材,可以对函数图象进行平移,可以对几何图 形进行平移、旋转,考查学生的数学综合应用能力在选择、填空中也会涉及变换的概念和简单应用只 要抓住全等变换的特点,找到变与不变的量就可以解决问题预计在 2019 年中考中仍会在压轴部分渗透变 换,但是会有新情境的渗透 【方法揭秘】 1.平移的性质 (1)平移前后,对应线段平行、对应角相等; (2)各对应点所连接的线段平
2、行(或在同一直线上)或相等; (3)平移前后的图形全等,注意:平移不改变图形的形状和大小. 2.旋转的性质: (1)对应点到旋转中心的距离相等; (2)每对对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前后的图形全等. 3.中心对称的性质: 在成中心对称的两个图形中,对应点的连线都经过对称中心,并且被对称中心平分_成中心对称的两个图 形全等. 【典例分析】 例 1 如图 小明将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得,在 进行如下操作时遇到了下面的几个问题,请你帮助解决 (1)将的顶点 移到矩形的顶点 处,再将三角形绕点 顺时针旋转使 点落在边上,此时,恰 好经过点
3、(如图 ) ,请你求出和的长度; (2)在(1)的条件下,小明先将三角形的边和矩形边重合,然后将沿直线向右平移,至 点与 重合时停止在平移过程中,设 点平移的距离为 ,两纸片重叠部分面积为 ,求在平移的整个过程 中, 与 的函数关系式,并求当重叠部分面积为时,平移距离 的值(如图 ) 2 思路点拨 (1)先在 RtBCE中,利用勾股定理求得 CE 的长,即可得 DE 的长,然后在 RtADE 中,利用勾股定理 即可求得 AE 的长;然后根据等腰三角形的性质与互余求得, 则可证,即,将各边数值代入即可求解; (2)如图,分 x4与 x4 两种情况,在 RtEFG 中,求得 tanF的值,从而得到
4、 PB关于 x的代数式,第 一种情况根据梯形的面积公式整理即可得解; 第二种情况根据 y为RPQ的面积加上矩形 BCQP 的面积即可 得到;然后将 y=10 时分别代入求解即可. 满分解答 (1), , , ; 来源:Z_xx_k.Com , , 又, ,即 在和中, , , 则, ; 3 (2)分两种情况: 是 时,如图,与相交于 , 的直角边, , , , , 四边形是直角梯形, 则重叠部分; 是 时,如图,与相交于 ,与相交于 ,作 PQCD与 Q, PQFG, RPQ=F,即 tanRPQ=tanF= , RQ= PQ=2, , 当重叠部分面积为时,即分别代入两等式, , 4 解得:(
5、不合题意舍去)或, 得出, 当时, 当时, 当时,或 例 2 如图,点 E 是正方形 ABCD 中 CD边上任意一点,AB4,以点 A 为中心,把ADE顺时针旋转 90 得 到ADF (1)画出旋转后的图形,求证:点 C、B、F三点共线; (2)AG 平分EAF 交 BC于点 G 如图 2,连接 EF若 BG:CE5:6,求AEF的面积; 如图 3,若 BM、DN 分别为正方形的两个外角角平分线,交 AG、AE 的延长线于点 M、N当 MMDC 时,直接写出 DN 的长 思路点拨 (1)旋转后的图形如图 1中所示,利用旋转不变性即可解决问题; (2)如图 2 中,连接 EG首先证明 EG=BG
6、+DE,设 BG=5k,CE=6k,则 DE=4-6k,CG=4-5k,EG=4-k, 在 RtEGC中,根据 EG2=EC2+CG2 即可解决问题; 如图 3中,连接 EG,延长 MN 交 AD的延长线于点 P,作 MQAB交 AB的延长线于点 Q由题意可知: PDN,BMQ 都是等腰直角三角形,设 DP=PN=x,BG=a,DE=b想办法构建方程组即可解决问题. 满分解答 (1)证明:旋转后的图形如图 1 中所示, 5 四边形 ABCD是正方形, ADAB,DABC90 , 点 D与点 B重合, ADF90 , ADF+ADC180 , C,B,F 共线 (2)解:如图 2 中,连接 EG
7、 BAFDAE, EAFDAB90 , AG平分EAF, EAG 90 45 , FAGFAB+BAGBAG+DAE45 , FAGEAG, AGAG,AFAE, GAEGAF(SAS) , FGEG, EGBF+BGDE+BG, BG:CE5:6, 可以假设 BG5k,CE6k,则 DE46k,CG45k,EG4k, 在 RtEGC中,EG2EC2+CG2, (4k)2(6k)2+(45k)2, k, DE , 6 AE=AF=, SAEF= AEAF= 解:如图 3中,连接 EG,延长 MN 交 AD的延长线于点 P,作 MQAB交 AB 的延长线于点 Q 由题意可知:PDN,BMQ都是等
8、腰直角三角形,设 DPPNx,BGa,DEb 四边形 AQMP 是矩形, MQBQAP4+x, DEPN, ,即, BGMQ, ,即 在 RtBCG中,EG2=EC2+CG2, (a+b)2=(4-a)2+(4-b)2 , 由可得 x=2 或-2(舍弃) DN=x=2 例 3 已知长方形 ABCD 中,AD=10cm,AB=6cm,点 M 在边 CD 上,由 C 往 D 运动,速度为 1cm/s,运动时 间为 t 秒,将ADM 沿着 AM 翻折至AD M,点 D 对应点为 D ,AD 所在直线与边 BC 交于点 P. (1)如图 1,当 t=0 时,求证:PA=PC; (2)如图 2,当 t
9、为何值时,点 D 恰好落在边 BC 上; (3)如图 3,当 t=3 时,求 CP 的长. 7 思路点拨 (1)由折叠性质可得 ADCA D C 可得DAC=D AC, 在长方形 ABCD 中,AD/BC,可得 DAC= BCA,从而得到D AC=BCA,即可得出结论。 (2) 由折叠性质可得 ADCA D C 可得 D M=DM=6-t, AD=A D =10, 根据勾股定理可得 B D =8 则 C D =2, 在 Rt CM D 中,根据勾股定理列出方程即可。 (3)当 t=3 时,CM=DM=3, 连接 PM,根据 HL证得 M D PMCP,可得 D P=PC, D MP=CMP,
10、由折 叠性质可得得出AMD=AMD ,从而证得AMP=90 ,再根据 ADMMDP 即可。 满分解答 (1)当 t=0 时,M 与 C重合 由折叠性质可得 ADCA D C DAC=D AC, 在长方形 ABCD中,AD/BC, DAC=BCA D AC=BCA, PA=PC; (2)由折叠性质可得 ADCA D C D M=DM=6-t,AD=A D =10, 在 Rt ABD 中,B D =8 D C=BC- B D =10-8=2cm 在 Rt CMD 中, 解得:t= 当 t= 时,点 D 恰好落在边 BC上; (3)当 t=3 时,CM=DM= D M=3, 由折叠性质可得:AD M
11、=D=90 8 连接 PM, 在 Rt M D P 和 Rt MCP 中 M D PMCP, D P=PC, DMP=CMP, AMD=AMD PMD +AMD =90 MAP +AMD =90 PMD =MAP AD M=PD M M D AP D M = P D . A D = P D .10 P D = CP= 例 4 如图(1),OABC 是一张放在平面直角坐标系中的矩形纸片,O 为坐标原点,点 A 在 x 轴的正半轴上, 点 C 在 y 轴的正半轴上, OA=5, OC=4, 在 OC 边上取一点 D, 将将纸片沿 AD 翻转, 使点 O 落在 BC 边 上的点 E 处 (1)求 D
12、、E 两点的坐标; (2)如图(2),若 AE 上有一动点 P(不与 A,E 重合) ,自点 A 沿 AE 方向向点 E 做匀速运动,运动的速度 为每秒 1 个单位长度,设运动时间为 t 秒,过点 P 作 ED 的平行线交 AD 于点 M,过点 M 作 AE 平行 线交 DE 于点 N求四边形 PMNE 的面积 S 与时间 t 之间的函数关系式;当 t 取何值时,s 有最大值, 9 最大值是多少? (3)请探究:在(2)的条件下,当 t 为何值时,以 A,M,E 为顶点的三角形是等腰三角形? 思路点拨 (1)E 点坐标为(2,4) ,D 点坐标为(0, ) ;(2)S 矩形PMNE= t2+
13、t;当 t= 时,S 矩形 PMNE 有最大值;(3)t= 或 t=2时,以 A,M,E 为顶点的三角形为等腰三角形,相应 M 点的坐标为( , )或(52 ,). 满分解答 解: (1)依题意可知,折痕 AD 是四边形 OAED 的对称轴, 在 RtABE 中,AE=AO=5,AB=4 BE= =3 CE=2 E 点坐标为(2,4) 在 RtDCE 中,DC2+CE2=DE2, 又DE=OD (4OD)2+22=OD2 解得:OD= D 点坐标为(0, ) (2)PMED, APMAED , AP=t,ED= ,AE=5, PM= = , 10 PE=5t 四边形 PMNE 为矩形 S 矩形
14、 PMNE=PM PE= (5t)= t2+ t; S 四边形 PMNE= (t )2+ 当 t= 时,S 矩形 PMNE 有最大值 (3)()若以 AE 为等腰三角形的底,则 ME=MA(如图 1) 在 RtAED 中,ME=MA, PMAE, P 为 AE 的中点, t=AP= AE= 又PMED, M 为 AD 的中点 过点 M 作 MFOA,垂足为 F,则 MF 是OAD 的中位线, MF= OD= ,OF= OA= , 当 t= 时, (0 5) ,AME 为等腰三角形此时 M 点坐标为( , ) ()若以 AE 为等腰三角形的腰,则 AM=AE=5(如图 1) 在 RtAOD 中,
15、AD= = 过点 M 作 MFOA,垂足为 F PMED, APMAED t=AP= =2 , 11 PM= t= MF=MP=,OF=OAAF=OAAP=52 , 当 t=2时, (025) ,此时 M 点坐标为(52 ,) 综合() ()可知,t=2.5 或 t=2 时,以 A,M,E 为顶点的三角形为等腰三角形, 相应 M 点的坐标为( ,1.25)或(52,) 例 5 如图,抛物线 l:y=0.5(xh)22 与 x 轴交于 A,B 两点(点 A 在点 B 的左侧) ,将抛物线 在 x 轴 下方部分沿轴翻折,x 轴上方的图象保持不变,就组成了函数 的图象 (1)若点 A 的坐标为(1,
16、0) 求抛物线 l 的表达式,并直接写出当 x 为何值时,函数 的值 y 随 x 的增大而增大; 如图 2,若过 A 点的直线交函数 的图象于另外两点 P,Q,且 SABQ=2SABP,求点 P 的坐标; (2)当 2x3 时,若函数 f 的值随 x 的增大而增大,直接写出 h 的取值范围 思路点拨 (1)利用待定系数法求抛物线的解析式,由对称性求点 B 的坐标,根据图象写出函数 的值 y 随 x 的增 大而增大(即呈上升趋势)的 x 的取值; 如图 2,作辅助线,构建对称点 F 和直角角三角形 AQE,根据 SABQ=2SABP,得 QE=2PD,证明PAD QAE,则,得 AE=2AD,设
17、 AD=a,根据 QE=2FD 列方程可求得 a 的值,并计算 P 的坐标; (2)先令 y=0 求抛物线与 x 轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并 列不等式或不等式组可得 h 的取值 12 如图 2,作 PDx 轴于点 D,延长 PD 交抛物线 l 于点 F,作 QEx 轴于 E,则 PDQE, 由对称性得:DF=PD, SABQ=2SABP, ABQE=2ABPD,QE=2PD, PDQE,PADQAE,AE=2AD, 设 AD=a,则 OD=1+a,OE=1+2a,P(1+a,(1+a3)22) , 点 F、Q 在抛物线 l 上, PD=DF=(1+a3
18、)22,QE= (1+2a3)22, (1+2a3)22=2(1+a3)22, 解得:a=或 a=0(舍) ,P( ,) ; 13 综上所述,当 3h4 或 h0 时,函数 f 的值随 x 的增大而增大 【变式训练】 一、单选题 1如图,正方形 ABCD的边长为 8,M在 DC 上,且 DM=2,N是 AC 上的一动点,则 DN+MN 的最小值 是( ) A8 B9 C10 D12 【答案】C 【解析】 【分析】 14 要求 DNMN 的最小值,DN,MN 不能直接求,可考虑通过作辅助线转化 DN,MN 的值,从而找出其最 小值求解 【详解】 解:正方形是轴对称图形,点 B 与点 D 是关于直
19、线 AC 为对称轴的对称点, 连接 BN,BD,则直线 AC 即为 BD 的垂直平分线, BNNDDNMNBNMN 连接 BM 交 AC 于点 P, 点 N 为 AC 上的动点, 由三角形两边和大于第三边, 知当点 N 运动到点 P 时, BNMNBPPMBM, BNMN 的最小值为 BM 的长度, 四边形 ABCD 为正方形, BCCD8,CM826,BCM90 , BM10, DNMN 的最小值是 10 故选:C 2如图,矩形 ABCD 的外接圆 O 与水平地面有唯一交点 A,圆 O 的半径为 4,且BC2AB若在没有 滑动的情况下,将圆 O 向右滚动,使得 O 点向右移动了 98,则此时
20、该圆与地面交点在( )上 AAB BBC CCD DDA 【答案】B 15 【解析】 【分析】 根据题意得出圆的周长以及圆转动的周数,进而得出与地面相切的弧 【详解】 圆 O半径为 4, 圆的周长为:2r=8, 将圆 O 向右滚动,使得O点向右移动了 98, 988=122, 即圆滚动 12周后,又向右滚动了 2, 矩形 ABCD 的外接圆 O与水平地面相切于 A点,BC=2AB, AB= 8= 2,AB +BC= 8=42, 此时BC与地面相切, 此时该圆与地面交点在BC上, 故选:B 3如图,在 RtABC 中,B=45 ,AB=AC,点 D为 BC中点,直角MDN绕点 D旋转,DM、DN
21、 分别与 边 AB、AC交于 E、F两点,下列结论:DEF 是等腰直角三角形;AE=CF;BDEADF;BE CF=EF,其中正确结论是( ) A B C D 【答案】C 【解析】 【分析】 根据等腰直角三角形的性质可得CADB45 , 根据同角的余角相等求出ADFBDE, 然后利用“角 边角”证明BDE和ADF全等,判断出正确;根据全等三角形对应边相等可得 DEDF、BEAF,从而 得到DEF 是等腰直角三角形,判断出正确;再求出 AECF,判断出正确;根据 BE+CFAF+AE, 16 利用三角形的任意两边之和大于第三边可得 BE+CFEF,判断出错误 【详解】 B45 ,ABAC,ABC
22、 是等腰直角三角形 点 D为 BC中点,ADCDBD,ADBC,CAD45 ,CADB MDN 是直角,ADF+ADE90 BDE+ADEADB90 ,ADFBDE 在BDE和ADF 中,BDEADF(ASA) ,故正确; DEDF,BEAF,DEF 是等腰直角三角形,故正确; AEABBE,CFACAF,AECF,故正确; BE+CFAF+AE,BE+CFEF,故错误; 综上所述:正确的结论有 故选 C 4如图,矩形 ABCD中,AB3,AD,将矩形 ABCD 绕点 B 按顺时针方向旋转后得到矩形 EBGF,此 时恰好四边形 AEHB 为菱形,连接 CH交 FG于点 M,则 HM( ) A
23、B1 C D 【答案】D 【解析】 【分析】 17 由旋转的性质得到 AB=BE, 根据菱形的性质得到 AE=AB, 推出ABE是等边三角形, 得到 AB=3, AD=, 根据三角函数的定义得到BAC=30 ,求得 ACBE,推出 C在对角线 AH上,得到 A,C,H共线,于是 得到结论 【详解】 如图,连接 AC交 BE 于点 O, 将矩形 ABCD绕点 B 按顺时针方向旋转后得到矩形 EBGF, AB=BE, 四边形 AEHB为菱形, AE=AB, AB=AE=BE, ABE是等边三角形, AB=3,AD=, tanCAB=, BAC=30 , ACBE, C 在对角线 AH上, A,C,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题14 图形变换和类比探究类几何压轴综合问题-突破中考数学压轴之学霸秘笈大揭秘教师版 专题 14 图形 变换 类比 探究 几何 压轴 综合 问题 突破 中考 数学 秘笈 揭秘 教师版
链接地址:https://www.77wenku.com/p-163911.html