2020-2021学年度江苏省南京市三校联考九年级上第二次月考数学试卷(含答案)
《2020-2021学年度江苏省南京市三校联考九年级上第二次月考数学试卷(含答案)》由会员分享,可在线阅读,更多相关《2020-2021学年度江苏省南京市三校联考九年级上第二次月考数学试卷(含答案)(15页珍藏版)》请在七七文库上搜索。
1、 20202020- -20212021 学年度江苏省南京市学年度江苏省南京市九年级上九年级上三校联考第二次月考数学试卷三校联考第二次月考数学试卷 一、选择题一、选择题(本大题共(本大题共 6 6 小题,每小题小题,每小题 2 2 分,共分,共 1212 分请把答案填写在答题卡相应位置上)分请把答案填写在答题卡相应位置上) 1.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴 影)区域的概率为( ) A. B. C. D. 2.数学老师在课堂上给同学们布置了 10 个填空题作为课堂练习,并将全班同学的答题情况绘制成条形统 计图由图可知,全班同学答对题数
2、的众数为( ) A. 7 B. 8 C. 9 D. 10 3.一元二次方程 x 22x+10 的根的情况是( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 没有实数根 D. 无法判断 4.下列关于二次函数 ,下列说法正确的是( ) A. 它的开口方向向下 B. 它的顶点坐标是 C. 当 时, 随 的增大而增大 D. 当 时, 有最小值是 3 5.二次函数 的图像如图所示,现有以下结论: ; ; ; ;其中正确的结论有( ) A. 1 个 B. 2 个 C. 3 个 D. 4 个. 6.如图,抛物线 y x 21 与 x 轴交于 A,B 两点,D 是以点 C(0,4)为圆心,1
3、 为半径的圆上的动点, E 是线段 AD 的中点,连接 OE,BD,则线段 OE 的最小值是( ) A. B. C. 3 D. 2 二、填空题(本大题共二、填空题(本大题共 1010 小题,每小题小题,每小题 2 2 分,共分,共 2020 分请把答案填写在答题卡相应位置上)分请把答案填写在答题卡相应位置上) 7.在一个不透明的袋子中有 个红球、 个绿球和 个白球,这些球除颜色外都相同,摇匀后从袋子 中任意摸出一个球,摸出_颜色的球的可能性最大. 8.游行队伍有 8 行 12 列,后又增加了 69 人,要使得队伍增加的行数和列数相同,需要增加_行。 9.一个扇形的弧长是 ,它的面积为 ,则这个
4、扇形的圆心角度数为_度 10.将二次函数 的图像向下平移 个单位后,它的顶点恰好落在 轴上,那么 的值等于_. 11.如图,四边形 ABCD 为 的内接四边形,已知 ,则 的度数为_. 12.甲、乙两人参加“环保知识”竞赛,经过 6 轮比赛,他们的平均成绩都是 97 分.如果甲、乙两人比赛 成绩的方差分别为 甲 乙 , 则这 6 次比赛成绩比较稳定的是_. (填 “甲” 或 “乙” ) 13.抛物线 与 轴交于两点,分别是 , ,则 _. 14.如果方程 有两个不等实数根,则实数 的取值范围是_. 15.如图,四边形 中, ,则将它以 为轴旋转 180后所得分别以 、 为母线的上下两个圆锥的侧
5、面积之比为_ 16.如图所示,抛物线 与 x 轴交于 A、B 两点,过点 B 的直线与抛物线交于点 C(点 C 在 x 轴上方),过 ABC 三点的M 满足MBC=45,则点 C 的坐标为_. 三、解答题(本大题共三、解答题(本大题共 1111 小题,共小题,共 8888 分请在答题卡指定区域内作答,解答时应写出文字说明、证明过分请在答题卡指定区域内作答,解答时应写出文字说明、证明过 程或演算步骤)程或演算步骤) 17.甲、乙、丙、丁 4 人聚会,吗,每人带了一件礼物,4 件礼物从外盒包装看完全相同,将 4 件礼物放在 一起 (1)甲从中随机抽取一件,则甲抽到不是自己带来的礼物的概率是_; (
6、2)甲先从中随机抽取一件,不放回,乙再从中随机抽取一件,求甲、乙 2 人抽到的都不是自己带来的 礼物的概率 18.某校举行了主题为“新冠肺炎防护”的知识竞赛活动,对八年级的两班学生进行了预选,其中各班前 5 名学生的成绩(百分制,单位:分)分别为:八(1)班 86,85,77,92,85;八(2)班 79,85,92, 85,89.通过数据分析,列表如下: 班级 平均分 中位数 众数 方差 八(1) 85 b c 22.8 八(2) a 85 85 d (1)直接写出表中 a,b,c,d 的值:a_,b_,c_,d_. (2)根据以上数据分析,你认为哪个班前 5 名同学的成绩较好?说明理由.
7、19.已知:关于 x 的一元二次方程:x 2-6x+m=0 (1)当 m=0 时,求原方程的解: (2)若方程有一个实数根为 3- ,求方程另一根及 m 的值。 20.如图,A,B,C 是O 上的点,其中 =2 ,过点 B 画 BDOC.于点 D. (1)求证:AB2BD. (2)若 AB2 ,CD1,求图中涂色部分的面积. 21.已知二次函数 y=ax 2+bx+c 中 x 与 y 的部分对应值如下表; x -3 -2 0 1 2 3 5 y 7 0 -8 -9 m -5 7 (1)表中 m=_。 (2)求该二次函数的解析式。 (3)试判断 P(4,1)是否在该函数图像上。 22.某社区决定
8、把一块长 ,宽 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化 区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的 4 个出口宽度相同,其宽度不 小于 ,不大于 ,设绿化区较长边为 ,活动区的面积为 .为了想知道出口宽度的取 值范围,小明同学根据出口宽度不小于 ,算出 . (1)求 y 与 x 的函数关系式并直接写出自变量 x 的取值范围; (2)求活动区的最大面积; (3) 预计活动区造价为50元/ , 绿化区造价为40元/ , 若社区的此项建造投资费用不得超过72000 元,求投资费用最少时活动区的出口宽度? 23.每年夏季全国各地总有未成年人因溺水而丧失生命,
9、 令人痛心疾首 今年南京市某校为确保学生安全, 开展了“远离溺水珍爱生命”的防溺水安全知识竞赛现从该校七、八年级中各随机抽取 10 名学生的竞 赛成绩(百分制)进行整理、描述和分析(成绩得分用 x 表示,共分成四组:A80 x85,B85x 90,C90 x95,D95x100),下面给出了部分信息:七年级 10 名学生的竞赛成绩是:99,80, 99,86,99,96,90,100,89,82;八年级 10 名学生的竞赛成绩在 C 组中的数据是:94,90,94.七、 八年级抽取的学生竞赛成绩统计表 年级 七年级 八年级 平均数 92 92 中位数 93 b 众数 c 100 方差 52 5
10、0.4 根据以上信息,解答下列问题: (1)直接写出上述图表中 a,b,c 的值; (2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一 条理由即可); (3)该校七、八年级共 720 人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x90)的学生人 数是多少? 24.如图,ABC 内接于O,点 D 在O 外,ADC90,BD 交O 于点 E,交 AC 于点 F,EACDCE, CEBDCA,CD6,AD8. (1)求证:AB CD; (2)求证:CD 是O 的切线; 25.如图是证明勾股定理时用到的一个图形,a,b,c 是 RtABC 和 RtBE
11、D 的边长,显然 AE= c,我 们把关于 x 的一元二次方程 ax 2+ cx+b=0 称为“弦系一元二次方程”。 请解决下列问题: (1)方程 x 2+ x+ =0 是不是“弦系一元二次方程”:_ (填“是”或“否”): 写出一个“弦系一元二次方程”:_; (2)求证:关于 x 的“弦系一元二次方程”ax 2+ cx+b=0 必有实数根; (3)当 ab 时,直接写出关于 x 的“弦系一元二次方程”ax 2+ cx+b=0 的求根公式:x 1=_,x2= _。 (4)若 x=-1 是“弦系一元二次方程”ax 2+ cx+b=0 的一个根,且四边形 ACDE 的周长是 6 ,求 MBC 面积
12、。 26.如图 (1)问题提出 如图,在ABC 中,BC6,D 为 BC 上一点,AD4,则ABC 面积的最大值是_. (2)问题探究 如图,已知矩形 ABCD 的周长为 12,求矩形 ABCD 面积的最大值. (3)问题解决 如图,ABC 是葛叔叔家的菜地示意图,其中 AB30 米,BC40 米,AC50 米,现在他想利用周边地 的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已 知葛叔叔欲建的鱼塘是四边形 ABCD,且满足ADC60.你认为葛叔叔的想法能否实现?若能,求出这个 四边形鱼塘周长的最大值;若不能,请说明理由. 27.如图,在平面直角坐标
13、系中,RtABC 的边 BC 在 x 轴上,ABC90,以 A 为顶点的抛物线 yx 2 bxc 经过点 C(3,0),交 y 轴于点 E(0,3),动点 P 在对称轴上. (1)求抛物线解析式; (2)若点 P 从 A 点出发,沿 AB 方向以 1 个单位/秒的速度匀速运动到点 B 停止,设运动时间为 t 秒, 过点 P 作 PDAB 交 AC 于点 D, 过点 D 平行于 y 轴的直线 l 交抛物线于点 Q, 连接 AQ, CQ, 当 t 为何值时, ACQ 的面积最大?最大值是多少? (3)若点 M 是平面内的任意一点,在 x 轴上方是否存在点 P,使得以点 P,M,E,C 为顶点的四边
14、形是菱 形,若存在,请直接写出符合条件的 M 点坐标;若不存在,请说明理由. 答案答案 一、选择题 1.解:设小正方形的边长为 1,则其面积为 1 圆的直径正好是大正方形边长, 根据勾股定理,其小正方形对角线为 ,即圆的直径为 , 大正方形的边长为 , 则大正方形的面积为 ,则小球停在小正方形内部(阴影)区域的概率为 故答案为:C 2.解:由条形统计图可得, 全班同学答对题数的众数为 9, 故答案为:C 3.解:a=1,b=-2,c=1, =b 2-4ac=(-2)2-411=0, 方程有两个相等的实数根 故答案为:B 4. 的二次项系数大于 0 函数开口向上,故答案为:A 错误; 的顶点坐标
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 2021 学年度 江苏省 南京市 联考 九年级 第二次 月考 数学试卷 答案
链接地址:https://www.77wenku.com/p-164544.html