2020年中考数学第一轮复习知识点12一元二次方程
《2020年中考数学第一轮复习知识点12一元二次方程》由会员分享,可在线阅读,更多相关《2020年中考数学第一轮复习知识点12一元二次方程(17页珍藏版)》请在七七文库上搜索。
1、一、选择题一、选择题 3(2019泰州) 方程 2x2+6x10 的两根为 x1、x2,则 x1+x2等于( ) A.6 B.6 C.3 D.3 【答案】C 【解析】根据一元二次方程根与系数的关系,x1+x2 6 2 3,故选 C. 6 (2019烟台)当5bc 时,关于 x 的一元二次方程 2 30 xbxc的根的情况为( ) A有两个不相等的实数根 B有两个相等的实数根 C没有实数根 D无法确定 【答案】A 【解析】因为5bc ,所以5cb ,因为 2 22 4 34 3 (5)6240bcbbb ,所以 该一元二次方程有两个不相等的实数根 10 (2019威海)已知 a,b 是方程 x
2、2+x30 的两个实数根,则 a2b+2019 的值是( ) A,2023 B,2021 C.2020 D.2019 【答案】A 【解析】由题得 a2a30,a+b1,所以 a2a3,所以 a 2b+2019a3b2019 (ab)3 2019(1)320192023,故选 A. 8 (2019盐城)关于 x 的一元二次方程 x2 +kx-2=0(k 为实数)根的情况是( ) A. 有两个不相等的实数根 C. 没有实数根 B. 有两个相等的实数根 D. 不能确定 【答案】A 【解析】a=1,b=k,c=-2,=b2-4ac=k2-4 1 (-2)=k2+80,方程有两个不相等的实数根故选 A
3、8 (2019山西)一元二次方程 x24x10 配方后可化为( ) A.(x+2)23 B.(x+2)25 C.(x2)23 D.(x2)25 【答案】D 【解析】原方程可化为:x24x1,x24x+41+4,(x2)25,故选 D. 7 (2019淮安)若关于 x 的一元二次方程02 2 kxx有两个不相等的实数根,则 k 的取值范围是( ) A.k-1 C.k1 【答案】B 【解析】关于 x 的一元二次方程02 2 kxx有两个不相等的实数根, =kk44)(14220, k-1. 4 (2019黄冈)若x1,x2是一元一次方程x24x50的两根,则x1 x2的值为 ( ) A.5 B.5
4、 C.4 D.4 【答案】A 【解析】由根与系数的关系可知 x1 x2-5. 1. (2019怀化)一元二次方程 x2+2x+1=0 的解是( ) A.x1=1,x2=-1 B.x1=x2=1 C.x1=x2=-1 D.x1=-1,x2=2 【答案】C. 【解析】方程 x2+2x+1=0, 配方可得(x+1)2=0, 解得 x1=x2=-1. 故选 C. 2. (2019滨州)用配方法解一元二次方程 x24x+10 时,下列变形正确的是( ) A (x2)21 B (x2)25 C (x+2)23 D (x2)23 【答案】D 【解析】x24x+1=0,移项得 x24x=1,两边配方得 x24
5、x+4=1+4,即(x2)2=3故选 D 3. (2019聊城)若关于 x 的一元二次方程(k2)x22kx+k6 有实数根,则 k 的取值范围为 ( ) A.k0 B.k0 且 k2 C.k 3 2 D.k 3 2 且 k2 【答案】D 【解析】 原方程是一元二次方程,k20,k2,其有实数根,(2k)24(k2)k0,解之得,k 3 2 ,k 的 取值范围为 k 3 2 且 k2,故选 D. 4. (2019 潍坊) 关于 x 的一元二次方程 22 20 xmxmm的两个实数根的平方和为 12, 则 m 的值为 ( ) Am=2 Bm=3 Cm=3 或 m=2 Dm=3 或 m=2 【答案
6、】A 【解析】由题意可得: 222 121212 ()212xxxxx x, 因为: 12 2 12 2 ,xxm x xmm 所以: 22 ( 2 )2()12mmm, 解得:m1=3,m2=2; 当 m=3 时 =6241120,所以 m=3 应舍去; 当 m=2 时 =(4)24120,符合题意 所以 m=2,故选择 A 5. (2019淄博) 若 22 1212 3,5,xxxx则以 12 ,x x为根的一元二次方程是( ) A. 2 320 xx B. 2 320 xx C. 2 320 xx D. 2 320 xx 【答案】A. 【解析】 222 121212 ()2,xxxxxx
7、 又 22 1212 3,5,xxxx 222 121212 2()()954,xxxxxx 12 ,2x x , 以 12 ,x x为根的一元二次方程是 2 320 xx. 故选 A. 6.(2019自贡)关于 x 的一元二次方程x 2-2x+m=0 无实数根,则实数 m 的取值范围是( ) A.m1 B.m1 C.m1 D.m1 【答案】D. 【解析】方程无实数根, =(-2)2-4 1 m=4-4m0. 解得,m1. 故选 D. 7. (2019金华)用配方法解方程 x26x80 时,配方结果正确的是( ) A. 2 (3)17x B. 2 (3)14x C. 2 (6)44x D. 2
8、 (3)1x 【答案】A 【解析】解方程 x26x80,配方,得(x3)217,故选 A 8. (2019宁波) 能说明命题”关于 x 的方程 x24x+m0 一定有实数根”是假命题的反例为 A.m1 B.m0 C.m4 D.m5 【答案】D 【解析】方程的根的判别式(4)24m164m,当0 时,方程无实数根,应使 164m4,可得原 方程无实数根,四个选项中,只有 m5 符合条件,故选 D. 二、二、填空题填空题 15 (2019嘉兴)在x 2+ +40 的括号中添加一个关于 x的一次项,使方程有两个相等的实数根 【答案】4x 【解析】根据一元二次方程有两个相等的实数根的条件可知,则b24
9、acb2160,得 b4, 故一次项为4x,故答案为 4x . 14(2019泰州)若关于 x 的方程 x2+2x+m0 有两个不相等的实数根,则 m 的取值范围是_. 【答案】m0,所以 m1. 16 (2019威海) 一元二次方程 3x242x 的解是 【答案】 1 113 3 x , 2 113 3 x 【解析】直接利用公式法解一元二次方程得出答案3x24-2x 即 3x2+2x-40,则b2-4ac4-43 (-4)520, 256 6 x 1 113 3 x , 2 113 3 x . 13 (2019盐城)设 1 x、 2 x是方程 2 32 0 xx的两个根,则 1212 xxx
10、x 【答案】1 【 解 析 】 根 据 一 元 二 次 方 程 中 根 与 系 数 的 关 系 , 由 韦 达 定 理 可 知 1212 32 bc xxxx aa ,得 1212 1xxxx . 10 (2019青岛)若关于 x 的 一 元二欠方程 2x 2 -x+m 0 有两个相等的实数根,则 m 的值为 . 【答案】 1 8 【解析】本题考查一元二次方程根的判别式,因为一元二次方程有两个相等的实数根,所以=(-1)2-4 2m=1-8m=0,解得 m= 1 8 . 9 (2019江西)设 1 x, 2 x是一元二次方程01 2 xx的两根,则 2121 xxxx= . 【答案】0 【解析
11、】 1 x, 2 x是一元二次方程01 2 xx的两根, 21 xx1, 21x x-1, 2121 xxxx=1+(-1)=0. 15(2019武汉) 抛物线 yax2bxc 经过点 A(3,0) 、B(4,0)两点,则关于 x 的一元二次方程 a(x1)2cbbx 的解是_ 【答案】x2 或 5 【解析】 抛物线yax2bxc 经过点 A (3,0) 、 B(4,0)两点,ya (x3) (x4)ax22ax12a b2a,c12a一元二次方程为 a(x1)212a2a2ax,整理,得 ax23ax10a0,a0,x2 3x100,解得 x12,x25 9.(2019济宁) 已知 x1 是
12、方程 x2bx20 的一个根,则方程的另一个根是 【答案】2 【解析】方法 1:把 x1 代入得 1b20,解得 b1,所以方程是 x2 x20,解得 x11,x22 方法 2:设方程另一个根为 x1,由根与系数的关系知 1x12x12 14 (2019陇南)关于 x 的一元二次方程 x2+x+10 有两个相等的实数根,则 m 的取值为 【答案】4 【解析】关于 x 的一元二次方程x2+mx+1=0有两个相等的实数根, 2 ()4 1 1m =0,解得,m=4, 故答案为:4 1. (2019 泰安)已知关于 x 的一元二次方程 x2(2k1)x+k2+30 有两个不相等的实数根,则实数 k
13、的取值范围是 _. 【答案】k0,解 之,得 k 1 3 且 a0 【解析】因为关于 x 的方程 ax2+2x30 有两个不相等的实数根,a0,且 224a(3)0,解之得,a 1 3 且 a0. 17 (2019娄底)已知方程 2 30 xbx的一根为52,则方程的另一根为_ 【答案】52 【解析】设原方程的另一个根为 1 x,则由一元二次方程根与系数的关系 12 c x x a 得 1 523x 1 352 3 52 525252 x 3. (2019 眉山) 设a、 b 是方程 x2+x-2019=0 的两个实数, 根则 (a-1)(b-1) 的值为 【答案】-2017 【解析】解:根据
14、题意,得:a+b=-1,ab=-2019,(a-1) (b-1)=ab-(a+b)+1=-2019+1+1=-2017,故答案为: -2017. 4. (2019攀枝花)已知 x1、x2是方程 x22x10 的两根,则 22 12 xx 。 【答案】6 【解析】由一元二次方程根与系数的关系可得 x1x22,x1x21, 22 12 xx(x1x2)22x1x2222 6 三、解答题三、解答题 17 (2019 年浙江省绍兴市,第 17 题,8 分 ) (2)x为何值时,两个代数式14 , 1 2 xx的值相等? 【解题过程】 21 (2019 浙江省杭州市,21,10 分)(本题满分 10 分
15、) 如图.已知正方形 ABCD 的边长为 1,正方形 CEFG 的面积为 S1,点 E 在 DC 边上,点 G 在 BC 的延长线.设以线段 AD 和 DE 为邻边的矩 形的面积为 S2.且 S1=S2. (1)求线段 CE 的长. (2)若点 H 为 BC 边的中点,连接 HD,求证:HD=HG. 【解题过程】 (1)设正方形 CEFG 的边长为 a, 正方形 ABCD 的边长为 1,DE=1-a, S1=S2,a 2=1(1-a) , 解得,(舍去) ,即线段 CE 的长是 ; (2)证明:点 H 为 BC 边的中点,BC=1,CH=0.5,DH=, CH=0.5,CG=,HG=,HD=H
16、G (第 21 题) H G F D A BC E 21 (2019衡阳)关于 x 的一元二次方程 x23xk0 有实数根. (1)求 k 的取值范围; (2)如果 k 是符合条件的最大整数,且一元二次方程(m1)x 2xm30 与方程 x23xk0 有一个相 同的根,求此时 m 的值. 解:(1)由一元二次方程 x23xk0 有实根,得判别式 94k0,k 9 4 . (2)k 的最大整数为 2,所以方程 x23x20 的根为 1 和 2. 方程 x23xk0 与一元二次方程(m1)x 2xm30 有一个相同根, 当 x1 时,方程为(m1)1m30,解得 m 3 2 ; 当 x2 时,方程
17、为(m1)2 22m30,解得 m1(不合题意) , 故 m 3 2 . 18 (2019常德)解方程: 2 3xx20 【解题过程】解: 2 3xx20,a1,b3,c2, 2 4bac17, 1 317 2 x , 2 317 2 x 15 (2019 安徽)解方程: (x1)2=4. 【解题过程】解: (x1)2=4,所以 x1=2,或 x1=2,4 分 即 x=3,或 x=1. 6 分 所以,原方程的解为 x1=3,x2=1. 8 分 1. (2019巴中)已知关于 x 的一元二次方程 x2+(2m+1)x+m210 有两个不相等的实数根. 求 m 的取值范围; 设 x1,x2是方程的
18、两根且 x12+x22+x1x2170,求 m 的值. 解:D(2m+1)24(m21)4m+5,因为原方程有两个不相等的实数根,所以 4m+50,m 5 4 -; 由根与系数的关系,x1+x2(2m+1),x1x2m21,所以原方程可化为(x1+x2)2x1x2170,即(2m+1)2(m21) 170,解之,得 m1 5 3 ,m23,因为 m 5 4 -,所以 m 5 3 . 2. (2019无锡)解方程: (1)052 2 xx 解:052 2 xx,4+20240,x116 ,x2 =1-6 8 (2019滨州)用配方法解一元二次方程 x24x+10 时,下列变形正确的是( ) A
19、(x2)21 B (x2)25 C (x+2)23 D (x2)23 【答案】D 【解析】x24x+1=0,移项得 x24x=1,两边配方得 x24x+4=1+4,即(x2)2=3故选 D 5.(2019遂宁)已知关于 x 的一元二次方程(a-1)x 2-2x+a2-1=0 有一个根为 x=0,则 a 的值为 ( ) A. 0B.1C. 1 D. -1 【答案】D 【解析】当 x=0 时,a 2-1=0,a= 1 ,是一元二次方程,a1,a=-1,故选 D. 12.(2019遂宁)若关于 x 的方程 x 2-2x+k=0 有两个不相等的实数根,则 k 的取值范围为 【答案】k0,4-4k0,k
20、0,故选 A 【知识点】一元二次方程化为基本形式,运用根的判别式判断根的情况 9 (2019广东) 已知 1 x 、 2 x 是一元二次方程 2 20 xx 的两个实数根,下列结论错误的是( ) A. 12 xx B. 2 11 20 xx C. 12 2xx D. 12 2xx 【答案】D 【解析】 本题考查一元二次方程根与系数关系, 一元二次方程的解法, 解 2 20 xx 得 x1=0,x2=2,所以 12 xx , 2 11 20 xx ,x1+x2=2,x1x2=0,所以错误的选项为 D,故选 D。 【知识点】一元二次方程根与系数关系 一元二次方程的解法 10. (2019广州)关于
21、 x 的一元二次方程 x2(k1)xk+20 有两个实数根 x1,x2,若(x1x2+2) (x1 x22)+2x1x23,则 k 的值( ) A0 或 2 B2 或 2 C2 D2 【答案】D 【解析】关于 x 的一元二次方程 x2(k1)xk+20 的两个实数根为 x1,x2, x1+x2k1,x1x2k+2 (x1x2+2) (x1x22)+2x1x23,即(x1+x2)22x1x243, (k1)2+2k443, 解得:k2 关于 x 的一元二次方程 x2(k1)xk+20 有实数根, (k1)241(k+2)0, 解得:k22 1 或 k22 1, k2 故选:D 【知识点】一元二次
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020年中考数学第一轮复习知识点12 一元二次方程 2020年中考数学第一轮复习知识点 12 一元 二次方程
文档标签
- 21.1一元二次方程
- 2020年中考数学第一轮复习知识点
- 二次方程
- 安徽第一卷2021年安徽中考第一轮复习试卷语文试题十
- 一元二次方程学案
- 2022年中考数学一轮复习专题08一元二次方程ppt课件
- 2022年中考数学一轮复习学案08一元二次方程含解析
- 2019年中考数学一元二次方程专题复习试卷含答案
- 2020年中考数学第一轮复习知识点12一元二次方程
- 2020年中考数学第一轮复习知识点10一元一次不等式组
- 2021年中考一轮数学复习学案一元二次方程及其应用
- 知识点12一元二次方程2019中考真题分类汇编
- 2020年中考数学第一轮复习知识点07一次方程组及其应用
- 2022年中考数学第一轮复习二元一次方程
- 中考第一轮复习教案一元二次方程
链接地址:https://www.77wenku.com/p-167069.html