吃透中考数学29个几何模型模型15:燕尾角
《吃透中考数学29个几何模型模型15:燕尾角》由会员分享,可在线阅读,更多相关《吃透中考数学29个几何模型模型15:燕尾角(13页珍藏版)》请在七七文库上搜索。
1、专题专题 15 15 燕尾角燕尾角 一、单选题一、单选题 1如图,在 ABC 中,A=20 ,ABC 与ACB的角平分线交于 D1,ABD1与ACD1的角平分线交 于点 D2,依此类推,ABD4与ACD4的角平分线交于点 D5,则BD5C的度数是( ) A24 B25 C30 D36 【答案】B 【详解】 A=20 ,ABC与ACB 的角平分线交于 D1, D1BC+D1CB= 1 2 (ABC+ACB)= 1 2 (180 -A), 1 D=180 - 1 2 (180 -A)= 1 2 A+90 =100 , 同理: 2 D=60 , 3 D=40 , 4 D=30 , 5 D=25 .
2、故选 B 二、解答题二、解答题 2如图(1)所示的图形,像我们常见的学习用品圆规我们不妨把这样图形叫做“规形图”,那么在这一 个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题: (1)观察“规形图”,试探究BDC与A、B、C之间的关系,并说明理由; (2)请你直接利用以上结论 ,解决以下三个问题: 如图(2),把一块三角尺 XYZ放置在 ABC上,使三角尺的两条直角边 XY、图(1)XZ恰好经过点 B、C, 若A=50 ,则ABX+ACX =_ ; 如图(3)DC平分ADB,EC 平分AEB,若DAE=50 ,DBE=130 ,求DCE 的度数; (写出解答过
3、程) 如图(4) ,ABD,ACD 的 10等分线相交于点 G1、G2、G9,若BDC=140 ,BG1C=77 ,则A 的度数=_ 【答案】 (1)BDC=A+B+C,详见解析; (2)40;DCE=90 ;70 【分析】 (1)根据题意观察图形连接 AD 并延长至点 F,根据一个三角形的外角等于与它不相邻的两个内角的和可 证BDC=BDF+CDF; (2)由(1)的结论可得ABX+ACX+A=BXC,然后把A=50 ,BXC=90 代入上式即可得到 ABX+ACX的值; 结合图形可得DBE=DAE+ADB+AEB,代入DAE=50 ,DBE=130 即可得到ADB+AEB 的值,再利用上面
4、得出的结论可知DCE= 1 2 (ADB+AEB)+A,易得答案 由方法,进而可得答案 【详解】 解: (1)连接 AD并延长至点 F, 由外角定理可得BDFBAD+B,CDFC+CAD; BDCBDF+CDF, BDCBAD+B+C+CAD. BACBAD+CAD; BDCBAC +B+C; (2)由(1)的结论易得:ABX+ACX+ABXC, A50 ,BXC90 , ABX+ACX90 50 40 故答案是:40; 由(1)的结论易得DBEDAE +ADB+AEB,DCEADCAECA DAE=50 ,DBE=130 , ADB+AEB80 ; DC平分ADB,EC 平分AEB, ADC
5、= 1 2 ADB,AEC= 1 2 AEB DCE 1 2 (ADB+AEB)+A=40 +50 =90 ; 由知,BG1C 1 10 (ABD+ACD)+ A, BG1C77 , 设A为 x , ABD+ACD140 x , 1 10 (140 x)x77, 14 1 10 x+x77, x70, A为 70 故答案是:70 【点睛】 本题考查三角形外角的性质,三角形的内角和定理的应用,能求出BDC=A+B+C 是解答的关键, 注意:三角形的内角和等于 180 ,三角形的一个外角等于和它不相邻的两个内角的和 3 如图,D是AB上一点,E是AC上一点,BE,CD相交于点F, 62A ,35A
6、CD,20ABE, 求BFD的度数. 【答案】63BFD. 【解析】 【分析】 根据三角形的外角性质先求出BDF的度数,再利用三角形内角和定理即可注出BFD的度数. 【详解】 解:在 ADC中, 97BDFAACD , 在在 BDF 中, 180180209763BFDABEBDF. 【点睛】 本题考查了三角形内角和定理及三角形外角的性质.熟练找出三角形内角与外角的关系是解题的关键. 4如图,BG是ABD的平分线,CH是ACD 的平分线,BG与 CH交于点O,若150BDC, 110BOC,求A的度数. 【答案】70A . 【解析】 【分析】 根据三角形的外角的性质得出燕尾角的基本图形的结论得
7、出BDC、BOC,在根据角平分线的性质即可 得出 【详解】 解:由燕尾角的基本图形与结论可得, BDCBOCOBDOCD BOCAABOACO BG是ABD的平分线,GH是ACD的平分线 ABOOBD,ACOOCD -得,270ABOCBDC 【点睛】 本题考查了三角形的内角和定理,角平分线的定义注意利用“8 字形”的对应角相等求出角的关系是解题的 关键,要注意整体思想的利用 5如图,AM、CM分别平分BAD和BCD ,若42B,54D,求M的度数. 【答案】48M. 【解析】 【分析】 根据三角形内角和定理用B、M 表示出BAM-BCM,再用B、M表示出MAD-MCD,再根 据角平分线的定义
8、可得BAM-BCM=MAD-MCD,然后求出M与B、D 关系,代入数据进行 计算即可得解; 【详解】 解:根据三角形内角和定理,B+BAM=M+BCM, BAM-BCM=M-B, 同理,MAD-MCD=D-M, AM、CM分别平分BAD和BCD, BAM=MAD,BCM=MCD, M-B=D-M, M= 1 2 (B+D)= 1 2 (42 +54 )=48 ; 【点睛】 本题考查了三角形的内角和定理,角平分线的定义注意利用“8 字形”的对应角相等求出角的关系是解题的 关键,要注意整体思想的利用 6如图,在ABC中,ABC与 ACB的平分线相交于点I,试说明BIC、A之间的数量关系. 【答案】
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 吃透 中考 数学 29 几何 模型 15 燕尾
链接地址:https://www.77wenku.com/p-171136.html