2021版中考压轴题专题突破5:一次函数与最值问题(含解析)
《2021版中考压轴题专题突破5:一次函数与最值问题(含解析)》由会员分享,可在线阅读,更多相关《2021版中考压轴题专题突破5:一次函数与最值问题(含解析)(27页珍藏版)》请在七七文库上搜索。
1、一次函数压轴题之线段最值一次函数压轴题之线段最值 1如图 1,在平面直角坐标系中,直线 l1:yx+b 与直线 l2:yx8 交于点 A,已知点 A 的横坐标 为5,直线 l1与 x 轴交于点 B,与 y 轴交于点 C,直线 l2与 y 轴交于点 D (1)求直线 l1的解析式; (2)将直线 l2向上平移 6 个单位得到直线 l3,直线 l3与 y 轴交于点 E,过点 E 作 y 轴的垂线 l4,若点 M 为 垂线 l4上的一个动点,点 N 为 x 轴上的一个动点,当 CM+MN+NA 的值最小时,求此时点 M 的坐标及 CM+MN+NA 的最小值; 2在平面直角坐标系中,直线 AB 与 x
2、 轴交于点 A,与 y 轴交于点 B,与直线 OC:yx 交于 C (1)如图 1 若直线 AB 的解析式:y2x+12 求点 C 的坐标; 求OAC 的面积; (2)如图 2,作AOC 的平分线 ON,若 ABON,垂足为 E,且 OA4,P、Q 分别为线段 OA、OE 上的动点, 连接 AQ 与 PQ,是探索 AQ+PQ 是否存在最小值?若存在,求出这个最小值;若不存在,说明理由 3如图,在平面直角坐标系中,矩形 OABC 的顶点 A(4,0) ,C(0,3) ,直线 yx+交 OA 于点 D, 交 BC 于点 E,动点 P 从点 O 出发,以每秒 2 个单位长度的速度沿 OAAB 运动,
3、到点 B 停止,设PDE 的面 积为 S(平方单位) ,点 P 的运动时间为 t(秒) (1)求点 D 和点 E 的坐标; (2)求 S 与 t 之间的函数关系式,并写出 t 的取值范围; (3)当点 P 在边 AB 上运动,且 PD+PE 的值最小时,直接写出直线 EP 的表达式 4一次函数的图象与 x 轴、y 轴分别交于点 A(8,0)和点 B(0,6) (1)确定此一次函数的解析式 (2)求坐标原点 O 到直线 AB 的距离 (3) 点 P 是线段 AB 上的一个动点, 过点 P 作 PM 垂直于 x 轴于 M, 作 PN 垂直于 y 轴于 N, 记 LPM+PN, S=PM PN 问
4、L 和 S 是否存在最大值和最小值?若存在,求出此时 P 点到原点 O 的距离,若不存在请说明理由 5如图,在平面真角坐标系中,点 A 的坐标是(,0) ,点 B 的坐标是(0,1) 点 B 和点 C 关于原点 对称点 P 是直线 AB 位于 y 轴右侧部分图象上一点,连接 CP,已知 SBPCSABC, (1)求直线 AC 的解析式; (2)如图 2,AOC 沿着直线 AC 平移得AOC,平移后的点 A与点 C 重合点 F 为直线 AC 上的一动 点, 当 PF+FC的值最小时,请求出 PF+FC的最小值及此时点 F 的坐标; (3)如图 3,将PBC 沿直线 PA 翻折得PBG,点 N 为
5、平面内任意一动点,在直线 PA 上是否存在点 M,使 得以点 M、N、P、G 为顶点的四边形是矩形?若存在,请直接写出点 M 的坐标;若不存在,说明理由 6如图,在平面直角坐标系中,平行四边形 ABCD 的边 AB 在 x 轴上,AD 与 y 轴交于点 E,连接 BE,已知点 A(3,0) 、B(3,0) 、C(7,4) ,点 G 为对角线 BD 上一点,过点 G 作 y 轴的平行线交 BE 于点 F,点 M、 N 是直线 BE 上的两个动点(点 M 在点 N 的上方) ,且 MN,连接 GN、DM (1)求BDE 的面积; (2)若 GF,求 DM+MN+NG 的最小值,此时在 y 轴上有一
6、动点 R,当|GRNR|最大时,求点 R 的坐标; (3)在(2)的条件下,把GFB 绕点 B 逆时针旋转一个角 a(0180) ,在旋转过程中,直线 GF 与直线 BE、x 轴分别交于点 P、点 Q,当BPQ 是以 B 为顶点的等腰三角形时,求出 PQ 的长以及相应的旋转 角的度数 7如图,直线 ykx+b 与 x 轴和 y 轴交于 A、B 两点,AB4,BAO45 (1)如图 1,求直线 AB 的解析式 (2)如图 1,直线 y2x2 交 x 轴于点 E且 P 为该直线在直线 AB 上方一动点,当PAB 的面积等于 10 时,将线段 PE 沿着 x 轴平移得到线段 P1E1,连接 OP1求
7、 OP1+P1E1+的最小值 (3)如图 2,在(2)问的条件下,若直线 y2x2 与 y 轴的交点是 C,连接 CE1,得到OCE1,将OCE1 绕着原点 O 逆时针旋转(0180) ,旋转过程中直线 OC 与直线 AB 交于点 M,直线 CE1与直线 AB 交 于点 N,当CMN 为等腰三角形时,直接写出的值 8如图,在平面直角坐标系中,直线 yx+4 分别交 x 轴,y 轴于 A,B 两点,点 C 为 OB 的中点,点 D 在 第二象限,且四边形 AOCD 为矩形(有一个角是直角的平行四边形) (1)直接写出点 A,B 的坐标,并求直线 AB 与 CD 交点 E 的坐标; (2)动点 P
8、 从点 C 出发,沿线段 CD 以每秒 1 个单位长度的速度向终点 D 运动;同时动点 N 从点 A 出发, 沿线段 AO 以每秒 1 个单位长度的速度向终点 O 运动,过点 P 作 PHOA,垂足为 H,连接 NP设点 P 的运动 时间为 t 秒 若NPH 的面积为 1,求 t 的值; 点Q是点B关于点A的对称点, 问BP+PH+HQ是否有最小值?如果有, 直接写出相应的点P的坐标和BP+PH+HQ 的最小值;如果没有,请说明理由 9已知直线 yx+6 与 x 轴,y 轴分别相交于点 A,B,将OBA 对折,使点 O 的对应点 E 落在直线 AB 上,折痕交 x 轴于点 C (1)求点 C
9、的坐标和直线 BC 的函数表达式; (2)若已知 x 轴上有一点 D(4,0) ,点 M 为直线 AB 上一点,点 N 为直线 BC 上一点,是否存在这样的点 M、 N,使得以点 A、D、M、N 为顶点的四边形是平行四边形?若存在,求出点 M 的坐标:若不存在,说明理由; (3)已知 y 轴上有点 P(0,2) ,点 Q 为直线 BC 上一点,点 K 为直线 yx 上一点,是否存在合适的点 Q, K,使得 PQ+KQ 最小?若存在,求出 PQ+KQ 的最小值以及此时 K 点的坐标;若不存在,请说明理由 10在平面直角坐标系 xoy 中,直线 yx+m(m0)与 x 轴,y 轴分别交于 A,B
10、两点,点 P 在直线 AB 上 (1)如图 1,若 m+1,点 P 在线段 AB 上,POA60,求点 P 的坐标; (2)如图 2,以 OP 为对角线作正方形 OCPD(O,C,P,D 按顺时针方向排列) ,当点 P 在直线 AB 上运动时, 的值是否会发生变化?若不变,请求出其值;若变化,请说明理由; (3)如图 3,在(1)的条件下,Q 为 y 轴上一动点,连 AQ,以 AQ 为边作正方形 AQEF(A,Q,E,F 按顺时 针方向排列) ,连接 OE,AE,则 OE+AE 的最小值为 11如图,一次函数 ykx+b 的图象与 x 轴交于点 A,与 y 轴交于点 B(0,2) ,与正比例函
11、数 yx 的图 象交于点 C(4,c) (1)求 k 和 b 的值; (2)如图 1,点 P 是 y 轴上一个动点,当|PAPC|最大时,求点 P 的坐标; (3)如图 2,设动点 D,E 都在 x 轴上运动,且 DE2,分别连结 BD,CE,当四边形 BDEC 的周长取最小值 时直接写出点 D 和 E 的坐标 12如图 1,在平面直角坐标系中,直线 l:y与 x 轴交于点 A,且经过点 B(2,m) ,已知点 C(3, 0) (1)求直线 BC 的函数解析式; (2)在线段 BC 上找一点 D,使得ABO 与ABD 的面积相等,求出点 D 的坐标; (3)y 轴上有一动点 P,直线 BC 上
12、有一动点 M,若APM 是以线段 AM 为斜边的等腰直角三角形,求出点 M 的坐标; (4)如图 2,E 为线段 AC 上一点,连结 BE,一动点 F 从点 B 出发,沿线段 BE 以每秒 1 个单位运动到点 E 再沿线段 EA 以每秒个单位运动到 A 后停止,设点 F 在整个运动过程中所用时间为 t,求 t 的最小值 1 【解答】解: (1)点 A 的横坐标为5, A(5,3) , 将点 A 代入 yx+b, b4, 直线 l1的解析式 yx+4; (2)l2:yx8 与 y 轴的交点 D(0,8) , 将直线 l2向上平移 6 个单位得到直线 l3,直线 l3与 y 轴交于点 E, E(0
13、,2) , 过点 E 作 y 轴的垂线 l4, 点 D 是点 C 关于直线 l4的对称点,作点 A 关于 x 轴的对称点 A(5,3) , 连接 AD交 x 轴、l4于点 N、M,则此时 CM+MN+NA 最小,最小值为:AD, CM+MN+NAMD+MN+ANAD, AD; CM+MN+NA 的值最小为; 2 【解答】解: (1)联立 AB、OC 的函数表达式得:, 点 C(4,4) ; 直线 AB 的解析式:y2x+12 令 y0,则 x6,即 OA6, SOACOAyC6412; (2)ON 是AOC 的平分线,且 ABON, 则点 A 关于 ON 的对称点为点 C,AOOC4, 当 C
14、、Q、P 在同一直线上,且垂直于 x 轴时,AQ+PQ 有最小值 CP, 设:CPOPx,则 2x 24216, 解得:x2CP 3 【解答】解: (1)yx+,当 y0 时,x3,即点 D(3,0) , 当 y3 时,x1,故点 E(1,3) , 故:D(3,0) ,E(1,3) ; (2)如图 1,当点 P 在 OD 段时,此时 0t, SPDOC3t+; 当点 P 在 DA 段时,此时t2, 同理可得:S3t; 当点 P(P)在 AB 段时,此时 2t, SS梯形 DABESADPSBEP61(2t4)3(72t)2t; 故 S时 2t; (3)在 x 轴上取点 D 的对称点 D(5,0
15、) ,连接 DE 交 AB 于点 P,则此时 PD+PE 的值最小, 将点 E、D的坐标代入一次函数表达式:ykx+b 得:,解得:, 故直线 EP 的表达式为:yx+ 4 【解答】解: (1)设一次函数解析式为 ykx+b, 函数图象经过点 A(8,0)和点 B(0,6) , , 解得 所以,函数解析式为 yx+6; (2)设点 O 到 AB 的距离为 h, 点 A(8,0)和点 B(0,6) , OA8,OB6, 由勾股定理得,AB10, SAOB10h86, 解得 h4.8, 所以,坐标原点 O 到直线 AB 的距离为 4.8; (3)设 AMx, 则 OMOAAM8x, PMx 轴,P
16、Ny 轴, 四边形 OMPN 是矩形, PNOM8x, PMAM tanBAOxx, LPM+PNx+8xx+8, 点 P 是线段 AB 上的一个动点, 点 M 在线段 OA 上, 0 x8, 0, 当 x0 时,L 值最大,最大值为 8,此时,点 P 到原点 O 的距离为 8, x8 时,L 值最小,最小值为 6,此时,点 P 到原点 O 的距离为 6 5 【解答】解: (1)点 B 和点 C 关于原点对称,则点 C(0,1) , 将点 A、C 的坐标代入一次函数表达式:ymx+n 得:,解得:, 故直线 AC 的表达式为:yx1; (2)过点 C作直线 lx 轴,过点 P 作 PFl,垂足
17、为点 F,交 AC 于点 F, tanABO,故ABO60,BAO30, OAB30FCF,FFFC, 则 PF+FCPF+FFPF,即此时,PF+FC最小,最小值为 PF, SBPCSABC,则|xP|xA|, 故点 P(,) , ACCC2,则点 C(,2) , 则点 F(,2) , 点 F(,) , PF+FC最小值 PF; (3)存在,理由: 当 GMPM 时, 如图ABC60ABG, GBH60,GBBC2, 则 GHGBsinGBH2sin60, 故点 G(,2) ; M、N、P、G 为顶点的四边形是矩形, 点 M 位置如下图所示,设点 M(m,m+1) , 将点 A、B 的坐标代
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 中考 压轴 专题 突破 一次 函数 问题 解析
链接地址:https://www.77wenku.com/p-171205.html