河南省南阳市二校联考2020-2021学年八年级上数学期末考试试卷(含答案解析)
《河南省南阳市二校联考2020-2021学年八年级上数学期末考试试卷(含答案解析)》由会员分享,可在线阅读,更多相关《河南省南阳市二校联考2020-2021学年八年级上数学期末考试试卷(含答案解析)(15页珍藏版)》请在七七文库上搜索。
1、河南省南阳市二校联考河南省南阳市二校联考 2020-2021 学年八年级上数学期末考试试卷学年八年级上数学期末考试试卷 一、选择题(本大题共一、选择题(本大题共 10 小题,共小题,共 30 分)分) 1.下列各数中最大的数是( ) A. 5 B. C. D. 8 2.下列各数中无理数有( ) -1.732, , ,3.212212221,3.14, , . A. 4 个 B. 3 个 C. 2 个 D. 5 个 3.下列计算正确的是( ) A. B. C. D. 4.如图,在正方形网格中,以格点为顶点的 的面积等于 3,则点 A 到边 BC 的距离为( ) A. B. C. 4 D. 3 5
2、.某样本容量是 60,分组后,第 2 组的频率是 0.15,那么第 2 组的频数是( ) A. 9 B. 18 C. 60 D. 400 6.如图,在余料 ABCD 中, ,现进行如下操作:以点 B 为圆心,适当长为半径画弧,分别交 BA, BC 于点 G,H;再分别以点 G,H 为圆心,大于 长为半径画弧,两弧在 内部相交于点 O,画 射线 BO,交 AD 于点 若 ,则 的度数为( ) A. B. C. D. 7.公元三世纪,我国汉代数学家赵爽在注解 周髀算经 时给出的“赵爽弦图”如图所示,它是由四个全 等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是 125,小正方
3、形面积是 25, 则 () A. B. C. D. 8.在 中, ,E 是 AB 上一点,且 ,过 E 作 交 AC 于 D,如果 ,则 等于( ) A. 3cm B. 4cm C. 5cm D. 6cm 9.如图所示,一个圆柱体高 8 cm , 底面半径 2 cm , 一只蚂蚁从点 A 爬到点 B 处吃食,要爬行的最短 路程 取 是( ) A. B. C. D. 无法确定 10.如图,点 E 是 BC 的中点, , ,AE 平分 ,下列结论: 其中正确的是( ) A. B. C. D. 二、填空题(本大题共二、填空题(本大题共 5 小题,共小题,共 15 分)分) 11.计算 的结果是_.
4、12.已知: , ,求 的值为_. 13.已知一个等腰三角形的两边长 a,b 满足方程组 则此等腰三角形的周长为_. 14.如下图,在 中, , , ,以 AB 为直径作半圆,则此半圆的 面积为_. 15.如图,等边 中,D 是 BC 边上的一点,把 折叠,使点 A 落在 BC 边上的点 D 处,折痕与 边 AB、AC 分别交于点 M、N,若 , ,那么边 BC 长为_. 三、计算题(本大题共三、计算题(本大题共 2 小题,共小题,共 12 分)分) 16.分解因式: (1) ; (2) . 17.如图, 平行四边形ABCO位于直角坐标系中, O为坐标原点, 点 , 点 交y轴于点 动 点 E
5、 从点 D 出发,沿 DB 方向以每秒 1 个单位长度的速度终点 B 运动,同时动点 F 从点 0 出发,沿射线 OA 的方向以每秒 2 个单位长度的速度运动,当点 E 运动到点 B 时,点 F 随之停止运动,运动时间为 秒 . (1)用 t 的代数式表示: _, _ (2)若以 A,B,E,F 为顶点的四边形是平行四边形时,求 t 的值. (3)当 恰好是等腰三角形时,求 t 的值. 四、解答题(本大题共四、解答题(本大题共 6 小题,共小题,共 48 分)分) 18.先化简,再求值: ,其中 , 19.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼
6、吸 道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问 卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图 治理杨絮一一您选哪一项?(单选) A减少杨树新增面积,控制杨树每年的栽种量 B调整树种结构,逐渐更换现有杨树 C选育无絮杨品种,并推广种植 D对雌性杨树注射生物干扰素,避免产生飞絮 E其他 根据以上统计图,解答下列问题: (1)本次接受调查的市民共有_人; (2)扇形统计图中,扇形 E 的圆心角度数是_; (3)请补全条形统计图; (4)若该市约有 90 万人,请估计赞同“选育无絮杨品种,并推广种植”的人数 20.如图,已知 , 与
7、交于点 , ,求证: . 21.已知 中, . (1)尺规作图:作 AB 的垂直平分线,交 BC 于点 保留作图痕迹,不写作法 ; (2)在(1)的条件下, , 求 的周长. 22.已知 是多项式 的一个因式,求 a,b 的值,并将该多项式因式分解. 23.如图 (1)【问题提出】 如图 , 已知 是等边三角形, 点E在线段AB上, 点D在直线BC上, 且 , 将 绕点 C 顺时针旋转 至 ,连接 试证明: . (2)如图 ,如果点 E 在线段 AB 的延长线上,其他条件不变,线段 AB,DB,AF 之间又有怎样的数量 关系 请说明理由 (3)如果点 E 在线段 BA 的延长线上,其他条件不变
8、,请在图 的基础上将图形补充完整 并写出 AB, DB,AF 之间的数量关系,不必说明理由 答案解析答案解析 一、选择题(本大题共 10 小题,共 30 分) 1.【答案】 A 【考点】实数大小的比较 【解析】【解答】j 解:因为-8 5,所以最大的数是 5, 故答案为:A. 【分析】根据实数的大小比较即得结论. 2.【答案】 A 【考点】无理数的认识 【解析】【解答】解: , 无理数有: , , ,3.212212221,共有 4 个. 故答案为:A. 【分析】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2 等;开方开不尽的数;以 及像 ,等有这样规律的数 无理数就是无限不循
9、环小数.理解无理数的概念,一定要同时 理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数 是无理数.由此即可判定选择项. 3.【答案】 D 【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方 【解析】【解答】解: 原式 ,故 A 错误; 原式 ,故 B 错误; 与 不能运算,故 C 错误; 故答案为:D. 【分析】根据整式的运算法则即可求出答案. 4.【答案】 C 【考点】三角形的面积,勾股定理 【解析】【解答】解:设单位方格的边长为 a, , 的面积等于 3, , 解得 负值舍去 , , 点 A 到边 BC 的距离为 . 故答案
10、为:D. 【分析】此题考查了三角形的面积勾股定理的运用,关键是根据图形列出求三角形面积的算式.根据勾股定 理表示出 BC 的长,再根据三角形的面积为 3,求出 BC,即可求出点 A 到边 BC 的距离. 5.【答案】 A 【考点】频数与频率 【解析】【解答】解: 样本容量是 60,分组后,第 2 组的频率是 0.15, 第 2 组的频数是 , 故答案为:A. 【分析】利用频数 频率 样本容量直接计算即可. 本题考查了频数与频率的知识,解题的关键是能够了解它们之间的关系,难度不大. 6.【答案】 B 【考点】平行线的性质,角平分线的定义,作图-角的平分线 【解析】【解答】解: , , , 根据作
11、图得到 BE 平分 , . 故答案为:B. 【分析】本题考查了基本作图:熟练掌握基本作图 作一条线段等于已知线段;作一个角等于已知角;作 已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线 也考查了平行线的性质,先利 用平行线的性质得 ,再利用基本作图判断 BE 平分 ,然后利用角平 分线的定义得到 的度数. 7.【答案】 A 【考点】勾股定理的证明,正方形的性质,解直角三角形 【解析】【解答】解: 大正方形的面积是 125,小正方形面积是 25, 大正方形的边长为 ,小正方形的边长为 5, , , . 故答案为:A. 【分析】根据正方形的面积公式可得大正方形的边长为 ,小正方形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河南省 南阳市 联考 2020 2021 学年 年级 数学 期末考试 试卷 答案 解析
链接地址:https://www.77wenku.com/p-172433.html