2021年江苏省常州市高考数学一模试卷(含答案解析)
《2021年江苏省常州市高考数学一模试卷(含答案解析)》由会员分享,可在线阅读,更多相关《2021年江苏省常州市高考数学一模试卷(含答案解析)(18页珍藏版)》请在七七文库上搜索。
1、 第 1 页(共 18 页) 2021 年江苏省常州市高考数学期初试卷(一模)年江苏省常州市高考数学期初试卷(一模) 一、 单项选择题 (本大题共一、 单项选择题 (本大题共 8 小题, 每小题小题, 每小题 5 分, 共计分, 共计 40 分 在每小题给出的四个选项中,分 在每小题给出的四个选项中, 只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1 (5 分)已知集合 Ax|x2+2ax3a20,Bx|x23x0,若 AB,则实数 a 的取值 范围为( ) A0 B1,3 C (,0)(3,+) D (,1)(3,+)
2、2 (5 分)i 是虚数单位,在复平面内复数3 + 2 3对应的点的坐标为( ) A (33 2 , 1 2) B (33 2 , 3 2) C ( 3 2 , 1 2) D ( 3 2 , 3 2) 3 (5 分)已知 a,b,c 是实数,则“ab”是“ac2bc2”的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件 4 (5 分)设函数 f(x)alnx+bx2,若函数 f(x)的图象在点(1,f(1) )处的切线方程 为 yx,则函数 yf(x)的增区间为( ) A (0,1) B (0, 2 2 ) C ( 2 2 ,+) D ( 2 2 ,1) 5 (5
3、 分)用红,黄,蓝,绿,黑这 5 种颜色随机给如图所示的四块三角形区域涂色,则“在 任意两个有公共边的三角形所涂颜色不同”的概率为( ) A4 3 53 B4 4 53 C4 3 54 D4 4 54 6 (5 分)如果在一次实验中,测得(x,y)的四组数值分别是(1,2.2) , (2,3.3) , (4, 5.8) , (5,6.7) ,则 y 对 x 的线性回归方程是( ) A = 0.15 + 4.05 B = + 1.45 C = 1.05 + 1.15 D = 1.15 + 1.05 7 (5 分)令(x+1)2020a1x2020+a2x2019+a3x2018+a2020 x+
4、a2021(xR) ,则 a2+2a3+ 第 2 页(共 18 页) +2019a2020+2020a2021( ) A201922019 B201922020 C202022019 D202022020 8 (5 分)函数 f(x)Asin(2x+)+kx+b,A0,0,k,bR,则函数 f(x)在区间 (,)上的零点最多有( ) A4 个 B5 个 C6 个 D7 个 二、 多项选择题 (本大题共二、 多项选择题 (本大题共 4 小题, 每小题小题, 每小题 5 分, 共计分, 共计 20 分 在每小题给出的四个选项中,分 在每小题给出的四个选项中, 至少有两个是符合题目要求的,请把答案添
5、涂在答题卡相应位置上)至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上) 9 (5 分)已知 , 是平面上夹角为 3的两个单位向量, 在该平面上,且( ) ( ) 0,则下列结论中正确的有( ) A| + | = 1 B| | = 1 C| | 3 D + , 的夹角是钝角 10 (5 分)已知在数学测验中,某校学生的成绩服从正态分布 N(110,81) ,其中 90 分为 及格线,则下列结论中正确的有 附:随机变量 服从正态分布 N(,2) ,则 P(2+2)0.9545( ) A该校学生成绩的期望为 110 B该校学生成绩的标准差为 9 C该校学生成绩的标准差为 81 D该校学生
6、成绩及格率超过 95% 11 (5 分)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1, 2,3,5,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列 数组成的数列an称为“斐波那契数列” ,记 Sn为数列an的前 n 项和,则下列结论中正 确的有( ) Aa821 BS732 Ca1+a3+a5+a2n1a2n D1 2+22+20212 2021 = 2022 12(5 分) 设函数 yf (x) 的定义域为 D, 若存在常数 a 满足a, aD, 且对任意的 x1 a,a,总存在 x2a,a,使得 f(x1) f(x2)1,称函数 f(x)为 P(
7、a)函数, 第 3 页(共 18 页) 则下列结论中正确的有( ) A函数 f(x)3x是 P(1)函数 B函数 f(x)x3是 P(2)函数 C若函数 f(x)log12(x+t)是 P(2)函数,则 t4 D若函数 f(x)tanx+b 是 P( 4)函数,则 b= 2 三、填空题(本大题共三、填空题(本大题共 4 小题,每小题小题,每小题 5 分,共计分,共计 20 分请把答案填写在答题卡相应位置分请把答案填写在答题卡相应位置 上)上) 13 (5 分)圆柱上、下底面的圆周都在一个体积为500 3 的球面上,圆柱底面直径为 8,则 该圆柱的表面积为 14 (5 分)函数 f(x)|sin
8、x+cosx|+|sinxcosx|的最小正周期为 15 (5 分)已知椭圆 C1: 2 +1 + 2 = 1的右焦点 F 也是抛物线 C2:y2nx 的焦点,且椭 圆与抛物线的交点到 F 的距离为5 3,则实数 n ,椭圆 C1 的离心率 e 16 (5 分)已知函数 f(x)= 1 24+5 ln|x2|,则使不等式 f(2t+1)f(t+2)成立的 实数 t 的取值范围是 四、解答题(本大题共四、解答题(本大题共 6 小题,共计小题,共计 70 分请在答题卡指定区域内作答解答时应写出文分请在答题卡指定区域内作答解答时应写出文 字说明、证明过程或演算步骤)字说明、证明过程或演算步骤) 17
9、 (10 分)设等比数列an的公比为 q(q1) ,前 n 项和为 Sn (1)若 a11,S6= 9 8 3,求 a3的值; (2)若 q1,am+am+2= 5 2 +1,且 S2m9Sm,mN*,求 m 的值 18 (12 分) 已知ABC 中, 它的内角 A, B, C 的对边分别为 a, b, c, 且 3b2+3c23a2+2bc (1)求 sinA 的值; (2)若 sinB2sinC,求 tanC 的值 19 (12 分)已知某射手射中固定靶的概率为3 4,射中移动靶的概率为 2 3,每次射中固定靶、 移动靶分别得 1 分、2 分,脱靶均得 0 分,每次射击的结果相互独立,该射
10、手进行 3 次打 靶射击:向固定靶射击 1 次,向移动靶射击 2 次 (1)求“该射手射中固定靶且恰好射中移动靶 1 次”的概率; (2)求该射手的总得分 X 的分布列和数学期望 第 4 页(共 18 页) 20 (12 分)如图,在四棱锥 PABCD 中,底面四边形 ABCD 是矩形,ABAP2BC,平 面 PAB平面 ABCD,二面角 PBCA 的大小为 45 (1)求证:PA平面 ABCD; (2)求直线 PB 与平面 PAC 所成的角的正弦值 21 (12 分)已知函数() = + ,a,bR (1)若 a0,b0,且 1 是函数 f(x)的极值点,求1 + 2 的最小值; (2)若
11、ba+1,且存在 x01 ,1,使 f(x0)0 成立,求实数 a 的取值范围 22 (12 分)已知等轴双曲线 C: 2 2 2 2 = 1(a0,b0)经过点( 5 2 ,1 2) (1)求双曲线 C 的标准方程; (2)已知点 B(0,1) 过原点且斜率为 k 的直线与双曲线 C 交于 E,F 两点,求EBF 最小时 k 的值; 点 A 是 C 上一定点, 过点 B 的动直线与双曲线 C 交于 P, Q 两点, kAP+kAQ为定值 , 求点 A 的坐标及实数 的值 第 5 页(共 18 页) 2021 年江苏省常州市高考数学期初试卷(一模)年江苏省常州市高考数学期初试卷(一模) 参考答
12、案与试题解析参考答案与试题解析 一、 单项选择题 (本大题共一、 单项选择题 (本大题共 8 小题, 每小题小题, 每小题 5 分, 共计分, 共计 40 分 在每小题给出的四个选项中,分 在每小题给出的四个选项中, 只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1 (5 分)已知集合 Ax|x2+2ax3a20,Bx|x23x0,若 AB,则实数 a 的取值 范围为( ) A0 B1,3 C (,0)(3,+) D (,1)(3,+) 【解答】解;已知集合 Ax|x2+2ax3a20 x|(x+3a) (xa)0, Bx
13、|x23x0 x|x3 或 x0, 若 AB, 则 B 集合包含 A 集合的所有元素, 若 a0 时,A0,不符合题意舍去, 当 a0 时,A3a,a, 则 a0 时,因为 AB,则 a3; a0 时,3a0,因为 AB,则3a3;即 a1, 故实数 a 的取值范围为(,1)(3,+) 故选:D 2 (5 分)i 是虚数单位,在复平面内复数3 + 2 3对应的点的坐标为( ) A (33 2 , 1 2) B (33 2 , 3 2) C ( 3 2 , 1 2) D ( 3 2 , 3 2) 【解答】解:3 + 2 3 = 3 + 2(3+) (3)(3+) = 3 + 2(3+) (3)2
14、+12 = 3 + 3 2 + 2 = 33 2 1 2 , 在复平面内复数3 + 2 3对应的点的坐标为( 33 2 , 1 2) 故选:A 3 (5 分)已知 a,b,c 是实数,则“ab”是“ac2bc2”的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件 【解答】解:由“ab”“ac2bc2” ,反之不成立,例如 c0 时 第 6 页(共 18 页) “ab”是“ac2bc2”的充分不必要条件 故选:A 4 (5 分)设函数 f(x)alnx+bx2,若函数 f(x)的图象在点(1,f(1) )处的切线方程 为 yx,则函数 yf(x)的增区间为( ) A
15、 (0,1) B (0, 2 2 ) C ( 2 2 ,+) D ( 2 2 ,1) 【解答】解:由 f(x)alnx+bx2,得 f(x)= + 2, 又函数 f(x)的图象在点(1,f(1) )处的切线方程为 yx, (1) = + 2 = 1 (1) = = 1 ,则 a1,b1 f(x)= 1 + 2, 由 f(x)= 1 + 20,得 x2 1 2, 又 x0,x 2 2 , 即函数 yf(x)的增区间为( 2 2 ,+) 故选:C 5 (5 分)用红,黄,蓝,绿,黑这 5 种颜色随机给如图所示的四块三角形区域涂色,则“在 任意两个有公共边的三角形所涂颜色不同”的概率为( ) A4
16、3 53 B4 4 53 C4 3 54 D4 4 54 【解答】解:用红,黄,蓝,绿,黑这 5 种颜色随机给如图所示的四块三角形区域涂色, 基本事件总数 n54, 其中“在任意两个有公共边的三角形所涂颜色不同”包含的基本事件个数: m543, 则“在任意两个有公共边的三角形所涂颜色不同”的概率为 P= = 543 54 = 43 53 故选:A 6 (5 分)如果在一次实验中,测得(x,y)的四组数值分别是(1,2.2) , (2,3.3) , (4, 第 7 页(共 18 页) 5.8) , (5,6.7) ,则 y 对 x 的线性回归方程是( ) A = 0.15 + 4.05 B =
17、+ 1.45 C = 1.05 + 1.15 D = 1.15 + 1.05 【解答】解: = 1 4(1+2+4+5)3, = 1 4(2.2+3.3+5.8+6.7)4.5, = =1 =1 22 = 2.2+6.6+45.8+56.7434.5 1+4+16+2549 = 11.5 10 =1.15, = =4.51.1531.05, 线性回归方程为 =1.15x+1.05 故选:D 7 (5 分)令(x+1)2020a1x2020+a2x2019+a3x2018+a2020 x+a2021(xR) ,则 a2+2a3+ +2019a2020+2020a2021( ) A20192201
18、9 B201922020 C202022019 D202022020 【解答】解:由于(x+1)2020C20200+C20201x+C20202020 x2020, 则 C20200C20202020,C20201C20202019, a1a2021,a2a2020, 2020a1+2019a2+2018a3+a2020a2+2a3+2019a2020+2020a2021, f(x)(x+1)2020a1x2020+a2x2019+a3x2018+a2020 x+a2021, f(x)2020(x+1)20192020a1x2019+2019a2x2018+2018a3x2017+a2020
19、, 令x 1 , 可 得2020 22019 2020a1+2019a2+2018a3+ +a2020 a2+2a3+ +2019a2020+2020a2021 故选:C 8 (5 分)函数 f(x)Asin(2x+)+kx+b,A0,0,k,bR,则函数 f(x)在区间 (,)上的零点最多有( ) A4 个 B5 个 C6 个 D7 个 【解答】解:根据题意,函数 f(x)Asin(2x+)+kx+b 在区间(,)上的零点, 就是函数 yAsin(2x+)和函数 ykxb 在区间(,)的交点, 对于 yAsin(2x+) ,其周期 T= 2 2 =, 区间(,)包含 2 个周期, 第 8 页
20、(共 18 页) 如图: 两个函数在两个周期中最多有 5 个交点,即函数 f(x)在区间(,)上的零点最多 有 5 个, 故选:B 二、 多项选择题 (本大题共二、 多项选择题 (本大题共 4 小题, 每小题小题, 每小题 5 分, 共计分, 共计 20 分 在每小题给出的四个选项中,分 在每小题给出的四个选项中, 至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上) 9 (5 分)已知 , 是平面上夹角为 3的两个单位向量, 在该平面上,且( ) ( ) 0,则下列结论中正确的有( ) A| + | = 1 B| | = 1
21、 C| | 3 D + , 的夹角是钝角 【解答】解: , 是平面上夹角为 3的两个单位向量, 如图: = , = ,距离坐标系如图, = , = , = , ( ) ( )0, 可得 =0,所以 的中为 P 在以 BC 为直径的圆上, 所以| + | = 3所以 A 不正确; | | = | | =1,所以 B 正确; | |的最大值为: 3 4 + 3 2 = 33 4 3,所以 C 正确; + , 的夹角是锐角,所以 D 不正确 故选:BC 第 9 页(共 18 页) 10 (5 分)已知在数学测验中,某校学生的成绩服从正态分布 N(110,81) ,其中 90 分为 及格线,则下列结论
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 江苏省 常州市 高考 数学 试卷 答案 解析
链接地址:https://www.77wenku.com/p-173431.html