2021届中考数学压轴大题专项训练专题13:函数综合(含答案解析)
《2021届中考数学压轴大题专项训练专题13:函数综合(含答案解析)》由会员分享,可在线阅读,更多相关《2021届中考数学压轴大题专项训练专题13:函数综合(含答案解析)(21页珍藏版)》请在七七文库上搜索。
1、 专题 13 函数综合 2021 届中考数学压轴大题专项训练(解析版) 1如图,在平面直角坐标系中,点(6,0)A、 (0,12)B 分别在x轴、y轴上,点C是直线2yx与直线AB 的交点,点D在线段OC上, 2 5OD (1)求直线AB的解析式及点C的坐标; (2)求点D的坐标及直线AD的解析式 【解析】解: (1)设直线AB的解析式为:y kxb ,将点(6,0)A、 (0,12)B 代入解析式 则 60 12 kb b ,解得, 2 12 k b , 直线AB的解析式为:212yx , 由题意联立方程组 212 2 yx yx ,解得, 3 6 x y , 点C的坐标为(3,6); (2
2、)设点D的坐标为( ,2 )aa, 2 5OD , 222 (2 )(2 5)aa, 解得,2a , 由题意得,0a, 2a (2,4)D , 设直线AD的解析式为y mxn ,把(6,0)A,(2,4)D代入, 得 60 24 mn mn ,解得, 1 6 m n , 直线AD的解析式为:6yx 2如图,反比例函数 y1 k x 与一次函数 y2mx+n 相交于 A(1,2) ,B(4,a)两点,AEy轴于点 E, 则: (1)求反比例函数与一次函数的解析式; (2)若 y1y2则直接写出 x 的取值范围; (3)若 M 为反比例函数上第四象限内的一个动点,若满足 S ABMS AOB,则求
3、点 M的坐标 【解析】 (1)把 A(1,2)代入反比例函数 1 k y x 得,k2 反比例函数的关系式为 1 2 y x , 把 B(4,a)代入 1 2 y x 得, 1 2 a , B(4, 1 2 ) 把 A(1,2) ,B(4, 1 2 )代入一次函数 2 ymxn得, 2 1 4 2 mn mn 解得 1 2 3 2 m n 一次函数的关系式为: 2 13 22 yx (2)当 12 yy时,反比例函数的图象在一次函数图象的下方, 结合图象可知,当 12 yy,自变量 x的取值范围为:x1或 0 x4 (3)当0 x时, 2 3 2 y 2 13 22 yx 与 y轴的交点坐标为
4、(0, 3 2 ) ,如图: S ABMS AOB 根据平行线间的距离处处相等,可将一次函数进行平移 3 2 个单位,则平移后的直线与反比例函数在第四 象限的交点即为所求的 M点 将 2 13 22 yx 向下平移 3 2 个单位过 O 点,关系式为: 1 2 yx , 1 2 2 yx y x 解得 12 12 22 11 xx yy , , M在第四象限, M(2,1) , 将 2 13 22 yx 向上平移 3 2 个单位后直线的关系式为: 1 3 2 yx , 1 3 2 2 yx y x 解得 34 34 313313 313313 22 xx yy , , M在第四象限, 313
5、(313,) 3 M , 综上所述,点 M 的坐标(2,1)或 313 (313,) 3 , 3小哲的姑妈经营一家花店,随着越来越多的人喜爱“多肉植物”,姑妈也打算销售“多肉植物”,小哲帮助 姑妈针对某种“多肉植物”做了市场调查后,绘制了以下两张图: (1)如果在 3 月份出售这种植物,单株获利_元; (2) 单株售价 1 y与月份 x 之间的关系式为_; 单株成本 2 y与月份 x 之间的关系式为_ (3)请你运用所学知识,帮助小哲的姑妈求出在哪个月销售这种“多肉植物”,单株获利最大(提示:单株 获利=单株售价-单株成本) 【解析】 (1)从题图知,3 月份的单株售价为 5元,单株成本为 4
6、元, 单株获利为5 41(元) 故答案为 1 (2)设直线的关系式为 1 (0)ykxb k 把点(3,5),(6,3)代入上式得 35 63 kb kb 解得 2 3 7 k b 直线的关系式为 1 2 7 3 yx 设抛物线的关系式为 2 2 (6)1ya x 把点(3,4)代入上式得 2 4(3 6)1a, 解得 1 3 a , 抛物线的关系式为 2 2 1 (6)1 3 yx 故答案为 1 2 7 3 yx; 2 2 1 (6)1 3 yx (3) 22 12 2117 7(6)1(5) 3333 yyxxx 1 0 3 , 当5x 时,取得最大值 答:5 月份销售这种“多肉植物”,单
7、株获利最大 4如图,直线y mxn 与双曲线 k y x 相交于1,2 , (2, )ABb两点,与x轴交于点E,与y轴相交于 点C (1)求m n,的值; (2)若点D与点C关于x轴对称,求ABD的面积; (3)在坐标轴上是否存在异于D点的点,P使得 PABDAB SS ?若存在,直接写出点坐标;若不存在, 说明理由 【解析】 (1)点 A(-1,2)在双曲线 k y x 上, -1 2 k , 解得,2k , 反比例函数解析式为: 2 y x , (2, )Bb 2 1 2 b , 则点 B的坐标为(2,-1) , 把1,2 , (2, 1)AB代入y mxn 得: 12 2 mn mn
8、, 解得 1 1 m n ; (2)对于 y=-x+1,当 x=0 时,y=1, 点 C的坐标为(0,1) , 点 D与点 C关于 x轴对称, 点 D的坐标为(0,-1) , ABD的面积= 1 2 2 3=3; (3)对于 y=-x+1,当 y=0 时,x=1, 直线 y=-x+1与 x轴的交点坐标为(0,1) , 当点 P 在 x轴上时,设点 P 的坐标为(a,0) , S PAB= 1 2 |1-a| 2+ 1 2 |1-a| 1=3, 解得,a=-1 或 3, 此时 P 点坐标为(-1,0)或(3,0) 当点 P 在 y轴上时,设点 P 的坐标为(0,b) , S PAB= 1 2 |
9、1-b| 2+ 1 2 |1-b| 1=3, 解得,b=-1或 3, D(0,-1) 此时 P 点坐标为(0,3) P 点坐标为(-1,0)或(3,0)或(0,3) 5如图,直角坐标系xOy中,一次函数 1 5 2 yx 的图像 1 l分别与x,y轴交于A,B两点,正比例函 数的图像 2 l与 1 l交于点C( ,4)m (1)求m的值及 2 l的解析式; (2)求 AOC 的面积; (3)若点 M是直线 1 5 2 yx 一动点,连接 OM,当 AOM的面积是 BOC 面积的 1 2 时,请直接写出 出符合条件的点 M的坐标; (4)一次函数1ykx的图像为 3 l,且 1 l, 2 l,
10、3 l不能 围成三角形,直接 写出k的值 【解析】 (1)点C( ,4) m 在 1 5 2 yx 上, 1 54 2 m, 2m, 2,4C, 设 2 l为 1 yk x,将2,4C代入, 得 1 24k , 1 2k , 2 l的解析式2yx (2)由于 1 21 2 , 1 l与 2 l垂直, 由(1)可知4CD, 在 1 l中,令0y ,可得 1 05 2 x,解得10 x , 10,0A, 令0 x,可得5y , 0,5B, 11 10420 22 AOC SOA CD (3)由题意可得: 1 2 AMBC, 设 1 ,5 2 Mxx , 则 2 21 105 2 AMxx , 2
11、2 2545BC, 2 211 105=5 22 xx , 2 215 105 24 xx , 整理得: 2 20990 xx , 解得: 1 11x , 2 9x , 故 M的坐标为 1 9,2 , 1 11, 2 (4)一次函数1ykx的图像为 3 l,且 1 l, 2 l, 3 l不能 围成三角形, 当 3 l经过点2,4C时, 3 2 k =; 当 2 l、 3 l平行时,2k ; 当 1 l、 3 l平行时, 1 2 k ; 故 k的值是 3 2 或 2或 1 2 6某大学生利用 40 天社会实践参与了某加盟店经营,他销售了一种成本为 20 元/件的商品,细心的他发现 在第x天销售的
12、相关数据可近似地用如下表中的函数表示: 销售量 销售单价 50 x 当120 x时,单价为30 2 x 当2140 x时,单价为 40 (1)求前 20天第几天获得的利润最大?最大利润是多少? (2)求后 20天第几天获得的利润最大?最大利润是多少? (3)在后 20天中,他决定每销售一件商品给山区孩子捐款m元(3m且m为整数) ,此时若还要求每一 天的利润都不低于 160元,求m的值 【解析】设该加盟店的每天利润为W元 (1)当120 x时 (50) 3020 2 x Wx 2 1 15500 2 xx 2 1 (15)612.5 2 x 由二次函数的性质可知,当115x时,W随x增大而增大
13、;当1520 x时,W随x增大而减小 则当15x 时,W取得最大值,最大值为612.5元 答:前 20 天中,第 15 天获得利润最大,最大利润是612.5元; (2)当2140 x时 504020201000Wxx 因为200 所以当2140 x时,W随x增大而减小 则当21x 时,W取得最大值,最大值为20 21 1000580(元) 答:后 20 天中,第 21 天获得利润最大,最大利润是 580 元; (3)由题意得:(50)(4020)(20)100050Wxmmxm 40 200m,3m且m为整数 320m 200m 由一次函数的性质可知,当2140 x时,W随x增大而减小 则当4
14、0 x时,W取得最小值,最小值为40(20) 100050200 10mmm(元) 要使每一天的利润都不低于 160 元,则只需W的最小值不低于 160元即可 则200 10160m 解得4m 因此,m的取值范围为34m且m为整数 故 m的值为 3或 4 7某网店尝试用单价随天数而变化的销售模式销售一种商品,利用 60 天的时间销售一种成本为 10元每件 的商品,经过统计得到此商品的日销售量 m(件) 、销售单价 n(元/件)在第 x 天(x为正整数)销售的相 关信息: m 与 x 满足一次函数关系,且第 1 天的日销售量为 98 件,第 4 天的日销售量为 92件; n与 x的函数关系式为:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 中考 数学 压轴 专项 训练 专题 13 函数 综合 答案 解析
文档标签
- 2021届中考数学压轴大题专项训练专题
- 2021届中考数学压轴大题专项训练专题12
- 2021届中考数学压轴大题专项训练专题13
- 2021届中考数学压轴大题专项训练专题11
- 2021届中考数学压轴大题专项训练专题03圆含答案解析
- 2021届中考数学压轴大题专项训练专题06规律问题含答案解析
- 2021届中考数学压轴大题专项训练专题09动态几何含答案解析
- 2021届中考数学压轴大题专项训练专题13函数综合含答案解析
- 2021届中考数学压轴大题专项训练专题11开放探究含答案解析
- 2021届中考数学压轴大题专项训练专题10阅读理解含答案解析
- 化学专题13
- 2020数学高考函数专题训练含答案解析
- 高考数学函数专题训练对数函数含答案解析
- 高考数学函数专题训练取整函数含答案解析
- 中考数学压轴专练专题13
- 高考数学函数专题训练指数函数含答案解析
- 高考数学函数专题训练分段函数含答案解析
- 高考数学函数专题训练抽象函数含答案解析
- 专项训练含答案解析
链接地址:https://www.77wenku.com/p-177039.html