2021年中考数学核心考点强化突破(全国通用)专题五 函数与几何综合运用(含答案解析)
《2021年中考数学核心考点强化突破(全国通用)专题五 函数与几何综合运用(含答案解析)》由会员分享,可在线阅读,更多相关《2021年中考数学核心考点强化突破(全国通用)专题五 函数与几何综合运用(含答案解析)(8页珍藏版)》请在七七文库上搜索。
1、专题五专题五 函数与几何综合运用函数与几何综合运用 类型 1 存在性问题 存在性问题一般有以下题型:是否存在垂直、平行位置关系;等腰、直角三角形、(特殊)平行四边 形形状关系;最大、最小值数量关系等 1如图,已知二次函数 y1x213 4 xc 的图象与 x 轴的一个交点为 A(4,0),与 y 轴的交点为 B,过 A、 B 的直线为 y2kxb. (1)求二次函数的解析式及点 B 的坐标; (2)由图象写出满足 y1y2的自变量 x 的取值范围; (3)在两坐标轴上是否存在点 P, 使得ABP 是以 AB 为底边的等腰三角形?若存在, 求出点 P 的坐标; 若不存在,说明理由 2如图,抛物线
2、 yax2bx3 经过点 A(2,3),与 x 轴负半轴交于点 B,与 y 轴交于点 C,且 OC3OB. (1)求抛物线的解析式; (2)点 D 在 y 轴上,且BDOBAC,求点 D 的坐标; (3)点 M 在抛物线上,点 N 在抛物线的对称轴上,是否存在以点 A,B,M,N 为顶点的四边形是平行 四边形?若存在,求出所有符合条件的点 M 的坐标;若不存在,请说明理由 类型 2 几何最值、定值问题 3如图,在平面直角坐标系中,平行四边形 ABOC 如图放置,将此平行四边形绕点 O 顺时针旋转 90 得到 平行四边形 ABOC.抛物线 yx22x3 经过点 A、C、A三点 (1)求 A、A、
3、C 三点的坐标; (2)求平行四边形 ABOC 和平行四边形 ABOC重叠部分的面积; (3)点 M 是第一象限内抛物线上的一动点,问点 M 在何处时,AMA的面积最大?最大面积是多少? 并写出此时 M 的坐标 4如图,已知抛物线 yax22 3ax9a 与坐标轴交于 A,B,C 三点,其中 C(0,3),BAC 的平分线 AE 交 y 轴于点 D,交BC 于点 E,过点 D 的直线 l 与射线 AC,AB 分别交于点 M,N. (1)直接写出 a 的值、点 A 的坐标及抛物线的对称轴; (2)点 P 为 抛物线的对称轴上一动点,若PAD 为等腰三角形,求出点 P 的坐标; (3)证明:当直线
4、 l 绕点 D 旋转时, 1 AM 1 AN均为定值,并求出该定值 类型 3 反比例函数与几何问题 5如图,P1,P2是反比例函数 yk x(k0)在第一象限图象上的两点,点 A1的坐标为(4,0)若P1OA1与 P2A1A2均为等腰直角三角形,其中点 P1,P2为直角顶点 求反比例函数的解析式 ()求 P2的坐标 ()根据图象直接写出在第一象限内当 x 满足什么条件时,经过点 P1,P2的一次函数的函数值大于反 比例函数 yk x的函数值 6如图,在平面直角坐标系中,正方形 OABC 的顶点 O 与坐标原点重合,点 C 的坐标为(0,3),点 A 在 x 轴的负半轴上,点 D,M 分别在边
5、AB,OA 上,且 AD2DB,AM2MO,一次函数 ykxb 的图象过 点 D 和 M,反比例函数 ym x的图象经过点 D,与 BC 的交点为 N. (1)求反比例函数和一次函数的表达式; (2)若点 P 在直线 DM 上,且使OPM 的面积与四边形 OMNC 的面积相等,求点 P 的坐标 专题五专题五 函数与几何综合运用函数与几何综合运用 类型 1 存在性问题 存在性问题一般有以下题型:是否存在垂直、平行位置关系;等腰、直角三角形、(特殊)平行四边 形形状关系;最大、最小值数量关系等 1如图,已知二次函数 y1x213 4 xc 的图象与 x 轴的一个交点为 A(4,0),与 y 轴的交
6、点为 B,过 A、 B 的直线为 y2kxb. (1)求二次函数的解析式及点 B 的坐标; (2)由图象写出满足 y1y2的自变量 x 的取值范围; (3)在两坐标轴上是否存在点 P, 使得ABP 是以 AB 为底边的等腰三角形?若存在, 求出点 P 的坐标; 若不存在,说明理由 解:(1)将 A(4,0)代入 y1x213 4 xc,得4213 4 4c0,解得 c3.所求二次函数的解析式 为 y1x213 4 x3.当 x0 时,y13,点 B 的坐标为(0,3) (2)满足 y1y2的自变量 x 的取值范围是:x0 或 x4. (3)存在,理由如下: 作线段 AB 的中垂线 l,垂足为
7、C, 交 x 轴于点 P1,交y 轴于点 P2.A(4, 0), B(0, 3),OA4,OB3.在 RtAOB 中,AB OA2OB25.ACBC5 2.RtACP1与 RtAOB 有 公共OAB, RtACP1RtAOB.AP1 AB AC OA, 即 AP1 5 5 2 4, 解得 AP1 25 8 .而 OP1OAAP1425 8 7 8, 点 P1的坐标为(7 8,0)又RtP2CB 与 RtAOB 有公共OBA,RtP2CBRtAOB. P2B AB BC BO, 即P2B 5 5 2 3, 解得 P2B 25 6 .而 OP2P2BOB25 6 37 6, 点 P2的坐标为(0,
8、 7 6) 所求点 P 的坐标为( 7 8, 0)或(0,7 6) 2 如图, 抛物线 yax2bx3 经过点 A(2, 3), 与 x 轴负半轴交于点 B, 与 y 轴交于点 C, 且 OC3OB. (1)求抛物线的解析式; (2)点 D 在 y 轴上,且BDOBAC,求点 D 的坐标; (3)点 M 在抛物线上,点 N 在抛物线的对称轴上,是否存在以点 A,B,M,N 为顶点的四边形是平行 四边形?若存在,求出所有符合条件的点 M 的坐标;若不存在,请说明理由 解:(1)由 yax2bx3 得 C(0.3),OC3,OC3OB,OB1,B(1,0),把 A(2, 3),B(1,0)代入 y
9、ax2bx3 得 4a2b33 ab30 , a1 b2,抛物线的解析式为 yx 22x3; (2)设连接 AC,作 BFAC 交 AC 的延长线于 F,A(2,3),C(0,3),AFx 轴,F(1, 3),BF3,AF3,BAC45 ,设 D(0,m),则 OD|m|,BDOBAC,BDO45 , ODOB1,|m|1,m 1,D1(0,1),D2(0,1); (3)设 M(a,a22a3),N(1,n),以 AB 为边,则 ABMN,ABMN,如图 2,过 M 作 ME对 称轴于 E,AFx 轴于 F,则ABFNME,NEAF3,MEBF3,|a1|3,a4 或 a 2,M(4,5)或(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年中考数学核心考点强化突破全国通用专题五 函数与几何综合运用含答案解析 2021 年中 数学 核心 考点 强化 突破 全国 通用 专题 函数 几何 综合 运用 答案 解析
链接地址:https://www.77wenku.com/p-178584.html