2021年高考数学压轴讲与练 专题04 应用导数研究函数的极(最)值(原卷版)
《2021年高考数学压轴讲与练 专题04 应用导数研究函数的极(最)值(原卷版)》由会员分享,可在线阅读,更多相关《2021年高考数学压轴讲与练 专题04 应用导数研究函数的极(最)值(原卷版)(7页珍藏版)》请在七七文库上搜索。
1、专题 04 应用导数研究函数的极(最)值 【压轴综述】【压轴综述】 纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函 数的零点等,是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,应用导 数研究函数的极(最)值问题的主要命题角度有:已知函数求极值(点)、已知极值(点),求参数 的值或取值范围、利用导数研究函数的最值、函数极值与最值的综合问题.本专题就应用导 数研究函数的极(最)值问题,进行专题探讨,通过例题说明此类问题解答规律与方法. 一、函数极值的两类热点问题 (1)求函数f(x)极值这类问题的一般解题步骤为: 确定函数的定义域; 求导数f(x)
2、; 解方程f(x)0, 求出函数定义域内的所有根; 列表检验f(x)在f(x)0 的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0 处取极大值,如果左负右正,那么f(x)在x0处取极小值 (2)由函数极值求参数的值或范围 讨论极值点有无(个数)问题, 转化为讨论f(x)0 根的有无(个数) 然后由已知条件列出 方程或不等式求出参数的值或范围,特别注意:极值点处的导数为 0,而导数为 0 的点不一 定是极值点,要检验极值点两侧导数是否异号 二、函数最值的基本求法 1.求函数f(x)在a,b上的最大值和最小值的步骤: 第一步,求函数在(a,b)内的极值; 第二步,求函数在区间端点处的函数
3、值f(a),f(b); 第三步,将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个 为最小值 2求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性, 并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值 三、求解函数极值与最值综合问题的策略 (1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小 (2)求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性, 并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值 【压轴典例】【压轴典例】 例 1.(2020天津高考
4、T20)已知函数f(x)=x 3+kln x(kR),f(x)为 f(x)的导函数. (1)当k=6 时, 求曲线y=f(x)在点(1,f(1)处的切线方程; 求函数g(x)=f(x)-f(x)+ 的单调区间和极值; (2)当k-3 时,求证:对任意的x1,x21,+),且x1x2,有. 例 2(2021 江苏苏州市 高三)已知函数 sin 2cos x fx x , 1 x g xa e(a为常数) (1)求函数 f x在 2 x 处的切线方程; (2)设 1 n F xfxg xn Z ()若n为偶数,当 0a 时,函数 F x在区间0, 2 上有极值点,求实数a的取值范围; ()若n为奇
5、数,不等式 0F x 在0,上恒成立,求实数a的最小值 例 3.(2020北京高考T19)已知函数f(x)=12-x 2. (1)求曲线y=f(x)的斜率等于-2 的切线方程; (2)设曲线y=f(x)在(t,f(t)处的切线与坐标轴所围成的三角形的面积为S(t),求S(t)的最 小值. 例 4. (2020江苏高考T17)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所 示:谷底O在水平线MN上,桥AB与MN平行,OO为铅垂线(O在AB上),经测量,左侧曲线AO 上任一点D到MN的距离h1(米)与D到OO的距离a(米)之间满足关系式h1=a 2;右侧曲线 BO 上任一点F到MN的距离h
6、2(米)与F到OO的距离b(米)之间满足关系式h2=-b 3+6b.已知 点B到OO的距离为 40 米. (1)求桥AB的长度; (2)计划在谷底两侧建造平行于OO的桥墩CD和EF.且CE为 80 米,其中C,E在AB上(不包括 端点).桥墩EF每米造价k(万元),桥墩CD每米造价k(万元)(k0),问OE为多少米时,桥墩 CD与EF的总造价最低? 例 5(2021 湖北武汉市 高三)已知函数 f(x)=xlnx- 1 2 x2+(a-1)x(aR). (1)讨论函数 f(x)的极值点的个数; (2)若函数 f(x)有两个极值点 x1,x2,证明:f(x1)+f(x2)2a-3. 例 6.(2
7、019全国高考真题)已知函数 32 ( )2f xxaxb. (1)讨论 ( )f x的单调性; (2)是否存在, a b, 使得 ( )f x在区间0,1的最小值为 1且最大值为 1?若存在, 求出 , a b的 所有值;若不存在,说明理由. 例 7(2021 江西宜春市 高三)已知函数 2 26 46 x xe f x xx . (1)求函数 f x的单调区间,并求 f x的最值; (2)已知0,1a, 2 3 222 0 2 x ea xx g xx x . 证明: g x有最小值; 设 g x的最小值为 h a,求函数 h a的值域. 例 8.(2019全国高考真题(理)已知函数 32
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年高考数学压轴讲与练 专题04 应用导数研究函数的极最值原卷版 2021 年高 数学 压轴 专题 04 应用 导数 研究 函数 原卷版
链接地址:https://www.77wenku.com/p-179125.html