备战2021高考 专题02 函数性质及其应用(教师版含解析)
《备战2021高考 专题02 函数性质及其应用(教师版含解析)》由会员分享,可在线阅读,更多相关《备战2021高考 专题02 函数性质及其应用(教师版含解析)(14页珍藏版)》请在七七文库上搜索。
1、 专题专题 02 函数性质及其应用函数性质及其应用 1(2020 届安徽省合肥市高三第二次质检)若函数 4 ( )( )2F xf xx是奇函数, 1 ( )( ) 2 x G xf x为偶 函数,则( 1)f ( ) A 5 2 B 5 4 C 5 4 D 5 2 【答案】C 【解析】 函数 F(x)f(x)2x4是奇函数, F(1)+F(1)0,即 f(1)2+f(1)20,则 f(1)+f(1)4, 1 ( ) 2 x G xf x为偶函数, G(1)G(1),即 1 112 2 ff,则 3 11 2 ff, 由解得, 3 4 5 2 1 24 f ,故选 C。 2(2020 届安徽省
2、合肥市高三第二次质检)已知函数 2 2 log,1 ( ) 1,1 x x f x xx ,则 ( )(1)f xf x 的解集为 ( ) A( 1, ) B( 1,1) C 1 , 2 D 1 ,1 2 【答案】C 【解析】 函数 2 2 1 11 log xx f x xx , , ,则 f(x)f(x+1), 当 x0 时,则 x+11,则不等式 f(x)f(x+1),即 x21(x+1)21,求得 1 2 x0 当 01,则不等式 f(x)f(x+1), 此时 f(x)=x210f(x+1)=log2(x+1),0x1 成立 当 x1 时,不等式 f(x)f(x+1),即 log2xl
3、og2(x+1),求得 x1 综上可得,不等式的解集为( 1 2 ,+),故选 C。 3(2020 届安徽省皖南八校高三第三次联考)函数cos xx yeex 的部分图象大致是( ) A B C D 【答案】B 【解析】 由cos xx xeey , 可知函数cos xx yx ee 为奇函数, 由此排除 A, C, 又1x 时, 11 cos1yee,因为1,01 2 e ,则 11 0,cos10ee,即此时cos 0 xx yeex ,排 除 D,故选 B。 4 (2020 届甘肃省高三第一次高考诊断)已知lna, 1 2 be , 1 lg 2 c , 则a、b、c的大小关系为( )
4、Aab c Bbca Ccba Dcab 【答案】A 【解析】 对数函数lnyx在0,上为增函数, 则lnln1ae; 指数函数 x ye在R上为增函数, 则 1 0 2 01ee ,即01b;对数函数lgyx在0,上为增函数,则 1 lglg10 2 c . 因此,abc,故选 A。 5(2020 届甘肃省高三第一次高考诊断)若函数 2020 2020 log 1010 f xa x 为奇函数(其中a为常数),则 不等式 0f x 的整数解的个数是( ) A1011 B1010 C2020 D2021 【答案】B 【解析】 20202020 20202020 1010 loglog 1010
5、1010 aax f xa xx Q , 2020 2020 1010 log 1010 aax fx x , 由于函数 yf x为奇函数,则 0f xfx,即 2020 10102020 1010 1 10101010 aaxaax xx , 2 2222 2020 10101010aa xx,则 2 2 2 2020 10101010 1 a a ,解得1a , 2020 1010 log 1010 x f x x , 解不等式 1010 0 1010 x x ,即 1010 0 1010 x x ,解得10101010 x, 由 0f x ,可得 1010 1 1010 10101010
6、 x x x ,解得10100 x, 因此,不等式 0f x 的整数解的个数是1010,故选 B。 6(2020 届甘肃省兰州市高三诊断)已知函数 2 ln1f xx ,且 0.2 0.2af , 3 log 4bf, 1 3 log 3cf ,则a、b、c的大小关系为( ) Aab c Bcab Ccba Dbca 【答案】D 【解析】函数 2 ln1f xx 的定义域为R,且 22 1 ln1ln1 2 f xxx, 2 2 11 ln1ln1 22 fxxxf x ,函数 yf x为偶函数, 1 3 log 311cfff , 由于函数 2 1ux在 0,上为增函数,函数lnyu为增函数
7、, 所以,函数 2 ln1f xx 在0,上为增函数, 0.20 33 00.20.21log 3log 4 ,因此,acb,故选 D。 7(2020 届广东省东莞市高三模拟)己知定义在R上的奇函数 f x,当0 x时, 2 ( )logf xx;且 2f m ,则m( ) A 1 4 B4 C4 或 1 4 D4 或 1 4 【答案】D 【解析】当0m时, 2 ( )log2f mm,解得4m;当0m时, 2 ( )()log ()2f mfmm , 解得 1 4 m ,所以4m或 1 4 ,故选 D。 8(2020 届广东省汕头市高三第一次模拟)已知函数 sinf xAx0,0A的图象与直
8、线 0yaaA的三个相邻交点的横坐标分别是 2,4,8,则 f x的单调递减区间是( ) A6,6 3kk,kZ B63,6kk,kZ C6 ,6 3kk ,kZ D63,6kk,kZ 【答案】D 【解析】由题设可知该函数的最小正周期826T ,结合函数的图象可知单调递减区间是 2448 6 ,6 () 22 kk kZ ,即36 ,66 ()kk kZ,等价于63,6kk,应选 D。 9(2020 届广东省湛江市模拟)已知 1 3 6a , 2 log 2 2b , 2 1.2c ,则a,b,c的大小关系是( ) Abca Bacb Cabc Dbac 【答案】C 【解析】 3 2 22 3
9、 log 2 2log 2 2 b , 2 1.21.44c , 1 3 6a , 3 3 1 3 66a 3 327 6 28 , abc故选 C。 10(2020 届广东省湛江市模拟)已知函数 ln ,1 ( ) 2 ,1 x ax x f x x ,若 ( )f x在R上为增函数,则实数a的取 值范围是( ) A2, ) B0,2 C(2,) D(,2 【答案】A 【解析】当1x时, 1 ( )222 x f x,当1x 时, ( )lnf xaxa , 当2a时, ( )f x在R上为增函数, 2,)a,故选 A。 11(2020 届广东省湛江市模拟)函数(1)yf x为奇函数,且在R
10、上为减函数,若 (2)1f ,则满足 1(1)1f x 的x的取值范围是( ) A 1,1 B1,3 C0,2 D2,4 【答案】B 【解析】 函数(1)yf x为奇函数,且在R上为减函数, 函数( )yf x的图象关于点(1,0)对称,且在R上为减函数 ( )(2)0f xfx (0)(2)1ff 由1(1)1f x ,可得(2)(1)(0)ff xf 又函数( )yf x在R上为减函数, 012x 13x,故选 B。 12 (2020 届广西柳州市高三第一次模拟)若定义在R上的偶函数 f x满足 2f xf x, 且0 ,1x 时, f xx,则函数 5 logh xf xx的零点个数是(
11、 ) A2 个 B4 个 C6 个 D8 个 【答案】D 【解析】( )f x是定义在R上的偶函数,且0,1x时, f xx, 当 1,0 x 时,0,1,(),( )xfxxf xx , 又 f x满足 2f xf x, 所以 f x是周期为 2 的偶函数,且( )0,1f x , 令( )0h x , 5 log0,1, 5, 11,5f xxx , 设 5 ( )logg xx,则( )g x为偶函数, 所以( )h x的零点的个数为 ( )f x与( )g x在1,5上交点个数的两倍, 画出( ), ( )f x g x在1,5图象, 可得 ( )f x与( )g x在1,5上交点个数
12、为 4 个, 所以( )h x零点为 8 个. 故选 D。 13 (2020 届河南省郑州市高三第二次质量预测)设函数 2 9yx 的定义域为A, 函数 ln(3)yx 的定 义域为B,则AB ( ) A( ,3) B( 8, 3) C3 D 3,3) 【答案】D 【解析】由题意,对于函数 2 9yx , 2 90 x ,解得33x ,即3,3A ;对于函数 ln(3)yx ,30 x,解得3x,即 ,3B ,所以AB 3,3),故选 D。 14(2020 届河南省郑州市高三第二次质量预测)函数 2 | | ( ) 24 x x f x 的图象大致为( ) A B C D 【答案】D 【解析】
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战2021高考 专题02 函数性质及其应用教师版含解析 备战 2021 高考 专题 02 函数 性质 及其 应用 教师版 解析
链接地址:https://www.77wenku.com/p-179559.html