2021年中考数学分类专题突破23 四边形中的旋转综合问题(含答案解析)
《2021年中考数学分类专题突破23 四边形中的旋转综合问题(含答案解析)》由会员分享,可在线阅读,更多相关《2021年中考数学分类专题突破23 四边形中的旋转综合问题(含答案解析)(36页珍藏版)》请在七七文库上搜索。
1、专题专题 23 23 四边形中的旋转综合问题四边形中的旋转综合问题 1、如图(1),将正方形 ABCD 与正方形 GECF 的顶点 C 重合,当正方形 GECF 的顶点 G 在正方形 ABCD 的对角线 AC 上时,的值为 如图(2),将正方形 CEGF 绕点 C 顺时针方向旋转 a 角(0 a45 ),猜测 AG 与 BE 之间的数量关 系,并说明理由 如图(3),将正方形 CEGF 绕点 C 顺时针方向旋转 a 角(45 a90 )使得 B、E、G 三点在一条直线 上,此时 tanGAC,AG6,求 BCE 的面积 解:(1)如图中, ACBC,CG EC, AGACCGBCECBE, ,
2、 故答案为: (2)结论: 如图中,所示,连接 CG ACGBCE, ACGBEC, , (3)如图中,连接 CG,、 ACGBEC, GACEBCAGCBEC90 , AG6, BE , tanEBCtanGAC, EBC30 , 在 Rt BEC 中,tanEBC EC , , 2、如图 1, ABC 是等腰直角三角形,BAC90 ,ABAC,四边形 ADEF 是正方形,点 B、C 分别在 边 AD、AF 上 (1)当 ABC 绕点 A 逆时针旋转 (0 90 )时,如图 2,求证:BDCF; (2)当 ABC 绕点 A 逆时针旋转 45 时,如图 3,延长 DB 交 CF 于点 H连接
3、BF、DF,延长 AB 交 DF 与 M,连接 HM找出所有与MHB 和为 45 度的角 (l)证明:如图 2 中, 由旋转得:ACAB,CAFBAD;AFAD, 在 ABD 和 ACF 中, , ABDACF(SAS), BDCF (2)解:如图 3 中,设 AF 交 DH 于 J ABDACF, AFCADB, FJHAJD, FHJDAJ90 , BADBAF45 ,AFAD, AMDF,NFMD, BFBD, BFMBDM, BMFBHF90 , B,M,F,H 四点共圆, MHBBFM, AFB+DFB45 ,ADB+BDF45 , 与MHB 和为 45 度的角有AFB,ADB,AF
4、C 3、如图,已知点 A (0,8),B (16,0),点 P 是 x 轴上的一个动点(不与原点 O 重合),连结 AP, 把 OAP 沿着 AP 折叠后,点 O 落在点 C 处,连结 PC,BC,设 P(t,0) (1)如图 1,当 APBC 时,试判断 BCP 的形状,并说明理由 (2)在点 P 的运动过程中,当PCB90 时,求 t 的值 (3)如图 2,过点 B 作 BH直线 CP,垂足为点 H,连结 AH,在点 P 的运动过程中,是否存在 AH BC?若存在,求出 t 的值:若不存在,请说明理由 解:(1)等腰三角形, 理由如下:APBC, APCBCP,APOCBP, OAP 沿着
5、 AP 折叠, APOAPC, PCBPBC, PCPB, BCP 是等腰三角形; (2)当 t0 时,如图, OAP 沿着 AP 折叠, AOPACP90 ,OPPCt, ACP+BCP180 , 点 A,点 C,点 B 三点共线, 点 A (0,8),B (16,0), OA8,OB16, AB 8, tanABO , , t44; 当 t0 时,如图, 同理可求:t44; (3)OAP 沿着 AP 折叠, ACAO8,ACPAOP90 , BHCP, ACPBHC90 , AHBC,CHCH, Rt ACHRt BHC(HL) ACBH, 四边形 AHBC 是平行四边形, 如图 2,当
6、0t16 时,点 H 在 PC 上时,连接 AB 交 CH 于 G, 四边形 AHBC 是平行四边形, AGBG4,HGCG,ACBH8, HG4, 在 Rt PHB 中,PB2BH2+PH2, (16t)264+(t8)2 , t8; 如图 3,当 0t16 时,点 H 在 PC 的延长线上时, 四边形 AHBC 是平行四边形, AGBG4,HGCG,ACBH8, HG4, 在 Rt PHB 中,PB2BH2+PH2, (16t)264+(t+8)2 , t ; 如图 4,当 t0 时, 同理可证:四边形 ABHC 是平行四边形, 又AHBC, 四边形 ABHC 是矩形, ACBH8,ABC
7、H4, 在 Rt PHB 中,PB2BH2+PH2, (16t)264+(t+8)2 , t168; 当 t16 时,如图 5, 四边形 ABHC 是矩形, ACBH8,ABCH8,CPOPt, 在 Rt PHB 中,PB2BH2+PH2, (t16)264+(t8)2 , t16+8 综上所述:当 t8 或或 168或 16+8时,存在 AHBC 4、如图,在 ABC 中,高 AD3,B45 ,tanC,动点 F 从点 D 出发,沿 DA 方向以每秒 1 个单位 长度的速度向终点 A 运动,当点 F 与点 A、D 不重合时,过点 F 作 AB、AC 的平行线,与 BC 分别交于 点 E、G,
8、将 EFG 绕 FG 的中点旋转 180 得 HGF,设点 F 的运动时间为 t 秒, HGF 与 ABC 重叠 部分面积为 S (1)当 t 秒时,点 H 落在 AC 边上; (2)求 S 与 t 的函数关系式; (3)当直线 FG 将 ABC 分为面积比为 1:3 的两部分时,直接写出 t 的值 解:(1)如图,当点 H 落在 AC 边上时, ADBC,AD3,B45 ,tanC, BD3,CD6, BC9, EFAB,FGAC, , , DEt,DG2t, EG3t, 将 EFG 绕 FG 的中点旋转 180 得 HGF, EFGH,EGFH, 四边形 EFHG 是平行四边形, FHEG
9、3t,FHEC, 若点 H 落在 AC 边上, AHFC, tanAHF , , t , 故答案为:; (2)当 0t时,S FH DF 3t tt2, 当t3 时,如图,设 FH 与 AC 交于点 N,HG 与 AC 交于点 P,过点 F 作 FMAC 于 M, 四边形 EFHG 是平行四边形, FHBC, 又FGAC, 四边形 FNCG 是平行四边形, FNGC62t, NH3t(62t)5t6, FDt,DG2t, FG t, FGAC, HNPHFG, , NP , FGAC, DACDFG, sinDACsinDFG, , FM(3t), S FM (NP+FG) (3t) (t+)
10、t2+10t6; (3)如图,延长 GF 交 AB 于 R,过点 R 作 ROBD 于 O, S ABC BC AD, S ABC 9 3, FGDC, tanCtanFGD, OG2RO, BDAD3,ADBC, B45 , 又ROBD, BRO 是等腰直角三角形, ROBO, BG3RO, 直线 FG 将 ABC 分为面积比为 1:3 的两部分, S BRGS ABC或 S BRGS ABC, 当 S BRGS ABC, BG RO, RO , BG3 3+2t, t , 当 S BRGS ABC, BG RO, RO , BG33+2t, t 5、已知线段 AB,如果将线段 AB 绕点
11、A 逆时针旋转 90 得到线段 AC,则称点 C 为线段 AB 关于点 A 的逆 转点点 C 为线段 AB 关于点 A 的逆转点的示意图如图 1: (1)如图 2,在正方形 ABCD 中,点 为线段 BC 关于点 B 的逆转点; (2)如图 3,在平面直角坐标系 xOy 中,点 P 的坐标为(x,0),且 x0,点 E 是 y 轴上一点,点 F 是线段 EO 关于点 E 的逆转点,点 G 是线段 EP 关于点 E 的逆转点,过逆转点 G,F 的直线与 x 轴交于 点 H 补全图; 判断过逆转点 G,F 的直线与 x 轴的位置关系并证明; 若点 E 的坐标为(0,5),连接 PF、PG,设 PF
12、G 的面积为 y,直接写出 y 与 x 之间的函数关系式, 并写出自变量 x 的取值范围 解:(1)由题意,点 A 是线段 AB 关于点 B 的逆转点, 故答案为 A (2)图形如图 3 所示 结论:GFx 轴 理由:点 F 是线段 EF 关于点 E 的逆转点,点 G 是线段 EP 关于点 E 的逆转点, OEFPEG90 ,EGEP,EFEO, GEFPEO, GEFPEO(SAS), GFEEOP, OEOP, POE90 , GFE90 , OEFEFHEOH90 , 四边形 EFHO 是矩形, FHO90 , FGx 轴 如图 41 中,当 0 x5 时, E(0,5), OE5, 四
13、边形 EFHO 是矩形,EFEO, 四边形 EFHO 是正方形, OHOE5, yFGPH x(5x)x2+x 如图 42 中,当 x5 时, yFGPH x(x5)x2x 综上所述, 6、如图 1,在等腰 Rt ABC 中,BAC90 ,ABAC2,点 M 为 BC 中点点 P 为 AB 边上一动点,点 D 为 BC 边上一动点,连接 DP,以点 P 为旋转中心,将线段 PD 逆时针旋转 90 ,得到线段 PE,连接 EC (1)当点 P 与点 A 重合时,如图 2 根据题意在图 2 中完成作图; 判断 EC 与 BC 的位置关系并证明 (2)连接 EM,写出一个 BP 的值,使得对于任意的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年中考数学分类专题突破23 四边形中的旋转综合问题含答案解析 2021 年中 数学 分类 专题 突破 23 四边形 中的 旋转 综合 问题 答案 解析
链接地址:https://www.77wenku.com/p-181064.html