2021届河北省保定市高三上学期10月摸底考试数学试题(教师版含解析)
《2021届河北省保定市高三上学期10月摸底考试数学试题(教师版含解析)》由会员分享,可在线阅读,更多相关《2021届河北省保定市高三上学期10月摸底考试数学试题(教师版含解析)(21页珍藏版)》请在七七文库上搜索。
1、2020 年高三摸底考试年高三摸底考试 数学试题数学试题 一一 选择题:本题共选择题:本题共 8 小题,每小题小题,每小题 5 分,共分,共 40 分分.在每小题给出的四个选项中,只有一项是在每小题给出的四个选项中,只有一项是 符合题目要求的符合题目要求的. 1. 已知集合 2 1,lg Ax yxBx yx,则AB ( ) A. 1,1 B. 1,) C. (0,1 D. (0,) 【答案】C 【解析】 【分析】 由二次根式及对数函数的性质可得11Axx ,0Bx x,再由交集的定义即可得解. 【详解】由题意, 2 111Ax yxxx ,lg 0Bx yxx x, 所以01(0,1ABxx
2、. 故选:C. 2. 函数( ) x f xex的零点所在的一个区间是( ) A. ( 2, 1) B. ( 1,0) C. (0,1) D. (1,2) 【答案】B 【解析】 【分析】 由函数的单调性及零点存在性定理即可得解. 【详解】由题意,函数( ) x f xex在 R 上单调递增, 且 2 220fe, 1 110fe , 0 000fe, 所以函数的零点所在的一个区间是( 1,0). 故选:B. 3. 已知角终边过点(3,1),则tan 4 ( ) A. 2 B. 2 C. 1 D. 1 3 【答案】A 【解析】 【分析】 由三角函数的定义可得 1 tan 3 ,再由两角和的正切公
3、式即可得解. 【详解】因为角终边过点(3,1),所以 1 tan 3 , 所以 1 1tantan 34 tan2 1 4 1tantan1 43 . 故选:A. 4. 已知两条直线 2121 :(3)45 3 ,:2/(5/)8,lt xytxtllyl,则t ( ) A. 1或7 B. 1 C. 7 D. 13 3 【答案】C 【解析】 【分析】 根据两条直线平行的条件列式,由此求得t的值. 【详解】由于 12 /ll,所以 352 4 38253 tt tt ,解得7t . 故选:C 5. 设 1 31 2 log,log,ae be ce ,则( ) A. abc B. bac C.
4、acb D. cab 【答案】C 【解析】 【分析】 由指数、对数函数的性质可得 1 0 2 acb,即可得解. 【详解】由题意, 33 1 loglog3 2 ae, 11 22 loglog 10be , 1 2 0 1 ce, 所以 1 0 2 acb. 故选:C. 6. 设非零向量a,b满足3a b, 1 cos, 3 a b , 16aab,则b ( ) A. 2 B. 3 C. 2 D. 5 【答案】A 【解析】 【分析】 由16aab可得()0aab,利用数量积的运算性质结合条件可得答案. 【详解】| 3|ab, 1 cos, 3 a b . 2 222 ()9|8|16aaba
5、a bbbb , | |2b . 故选:A 【点睛】本题考查利用向量垂直其数量积为零求向量的模长,属于中档题. 7. 易经中记载着一种几何图形-八卦图,图中正八边形代表八卦,中间的圆代表阴阳太极图.某中学开展 劳动实习,去测量当地八卦图的面积.如图,现测得正八边形的边长为4m,则整个八卦图(包括中间的太极 图)的面积约为( )( 21.414 ) A. 2 73m B. 2 77m C. 2 79m D. 2 83m 【答案】B 【解析】 分析】 连接正八边形的中心O及顶点,A B,由余弦定理结合三角形面积公式即可得解. 【详解】连接正八边形的中心O及顶点,A B,如图, 由题意,4AB ,
6、360 45 8 AOB,OAOB, 设OAOBx,则 222 2cos45ABOAOBOA OB即 22 1622xx , 所以 2 16 22 x , 所以整个八卦图的面积 2 116 88sin452 232 23277 222 AOB SSx . 故选:B. 8. 已知函数 2 5, ( ) 23, xx m f x xxxm 恰有2个零点,则实数m的取值范围是( ) A. ( 1,3(5,) B. 1,3)5,) C 1,) D. (5,) 【答案】A 【解析】 【分析】 画出图象,通过移动x m 结合函数的零点与方程的解的判断即可得结果. 【详解】由题意,函数 2 5, ( ) 2
7、3, xx m f x xxxm ,的图象如图: 方程50 x的解为5x ,方程 2 230 xx 的解为1x或2x; 当5m时,函数 f x恰有两个零点1,3; 当13m 时,函数有 2个零点1,5; 则实数 m 的取值范围是:( 1,3(5,) 故选:A. 二二 多选题:本题共多选题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分.在每小题给出的四个选项中,有多项符合在每小题给出的四个选项中,有多项符合 题目要求,全部选对的得题目要求,全部选对的得 5 分,有选错的得分,有选错的得 0分,部分选对的得分,部分选对的得 3 分分. 9. 下列说法正确的是( ) A. 3x
8、 是 2 4x 的充分不必要条件 B. “ 00 0 1 ,2xR x x ”的否定是“ 1 ,2xR x x ” C 若tan( )2 ,则 4 sin2 5 D. 定义在 , a b上的偶函数 2 ( )(5)f xxaxb的最大值为30. 【答案】AD 【解析】 【分析】 由充分条件、必要条件的定义可判断 A;由特称命题的否定可判断 B;由诱导公式、同角三角函数的关系及 二倍角公式即可判断 C;由偶函数的性质可求得 5 5 a b ,即可判断 D. 【详解】对于 A,3x 可推出 2 4x ,但 2 4x 推不出3x , 所以3x 是 2 4x 的充分不必要条件,故 A正确; 对于 B,
9、命题“ 00 0 1 ,2xR x x ”为特称命题, 所以该命题的否定为“ 1 ,2xR x x ”,故 B 错误; 对于 C,若tan()2,则 sin tan2 cos ,即sin2cos, 所以 222 sincos5cos1 ,所以 2 1 cos 5 , 所以 2 4 sin22sincos4cos 5 ,故 C错误; 对于 D,因为函数 2 ( )(5)f xxaxb是定义在 , a b上的偶函数, 所以 50 0 a ab ,所以 5 5 a b , 所以 2 ( )5,5,5f xxx 的最大值为(5)30f,故 D 正确. 故选:AD. 10. 等差数列 n a中, n S
10、为其前n项和, 1511 15,aSS,则以下正确的是( ) A. 1d B. 413 aa C. n S的最大值为 8 S D. 使得0 n S 的最大整数15n 【答案】BCD 【解析】 【分析】 设等差数列 n a的公差为d,由等差数列的通项公式及前 n 项和公式可得 1 2 15 d a ,再逐项判断即可得解. 【详解】设等差数列 n a的公差为d, 由题意, 11 1 5 411 10 511 22 15 adad a ,所以 1 2 15 d a ,故 A 错误; 所以 11314 39,129aadada ,所以 413 aa,故 B 正确; 因为 2 2 1 1 16864 2
11、 n n n a ndnnnS , 所以当且仅当8n 时, n S取最大值,故 C 正确; 要使 2 8640 n Sn ,则16n且nN , 所以使得0 n S 的最大整数15n ,故 D正确. 故选:BCD. 11. 函数( ) sin()0,0,| 2 f xAxA 的最大值为2, 其图象相邻两条对称轴之间的距离为 4 ,且 ( )f x的图象关于点,0 12 对称,则下列判断正确的是( ) A. 函数 ( )f x在, 24 12 上单调递增 B. 函数 ( )f x的图象关于直线 5 24 x 对称 C. 当 0, 4 x 时,函数 ( )f x的最小值为 3 D. 要得到函数 (
12、)f x的图象,只需要将2cos4yx 的图象向右平移 5 24 个单位 【答案】AD 【解析】 【分析】 由三角函数的图象与性质可得( )2sin 4 3 f xx ,再由三角函数的图象与性质可判断 A、B、C;由三 角函数图象的变换及诱导公式可判断 D. 【详解】由函数 ( )f x的最大值为 2可得 2A,( )2sin()0,| 2 f xx , 因为函数 ( )f x的图象相邻两条对称轴之间的距离为 4 , 所以函数的最小正周期T满足 24 T , 所以 2 4 T ,( )2sin(4) | 2 f xx , 又 ( )f x的图象关于点,0 12 对称,所以4, 12 kkZ 即
13、, 3 kkZ , 所以 3 ,( )2sin 4 3 f xx , 当, 24 12 x 时,4,0 32 x , 所以函数 ( )f x在, 24 12 上单调递增,故 A 正确; 当 5 24 x 时, 7 4 36 x , 所以直线 5 24 x 不是函数( )f x图象对称轴,故 B错误; 当0, 4 x 时, 2 4, 333 x ,( )3f x ,故 C错误; 将2cos4yx的图象向右平移 5 24 个单位可得的函数为: 55 2cos42cos 42cos 42sin 4 246323 yxxxxf x , 故 D 正确. 故选:AD. 【点睛】关键点点睛:解决本题的关键是
14、熟练掌握三角函数的图象与性质,细心计算即可得解. 12. 已知函数 ( )yf x 在R上可导且(0)1f,其导函数( ) fx满足 ( )2 ( ) 0 1 fxf x x ,设函数 2 ( ) ( ) x f x g x e ,下列结论正确的是( ) A. 函数( )g x在(1, )上为单调递增函数 B. 1x 是函数( )g x的极大值点 C 函数 ( )f x至多有两个零点 D. 0 x时,不等式 2 ( ) x f xe恒成立 【答案】BCD 【解析】 【分析】 根据 2 ( ) ( ) x f x g x e ,求导 2 ( )2 ( ) ( ) x fxf x g x e ,再
15、根据 ( )2 ( ) 0 1 fxf x x ,判断( )g x正负,得到( )g x 的单调性再逐项判断. 【详解】因为 2 ( ) ( ) x f x g x e , 所以 2 ( )2 ( ) ( ) x fxf x g x e , 又因为 ( )2 ( ) 0 1 fxf x x , 所以当1x 时,( )2 ( )0fxf x , 0gx ,则 g x递减; 当1x时,( )2 ( )0fxf x , 0g x ,则 g x递增; 所以当1x 时, g x取得极大值, 2 (1) (1) f g e ,当(1)0g时, g x无零点, 2 ( ) x f xg x e无零 点;当(
16、1)0g时, g x有一个零点, 2 ( ) x f xg x e有一个零点;当(1)0g时, g x有两个零点, 2 ( ) x f xg x e有两个零点,故函数( )f x至多有两个零点; 当0 x时, 0 (0) 01x f gg e , 2 ( ) ( )1 x f x g x e ,所以不等式 2 ( ) x f xe恒成立, 故选:BCD 【点睛】关键点点睛:本题的关键是发现 2 ( ) ( ) x f x g x e 的导数 2 ( )2 ( ) ( ) x fxf x g x e ,与条件 ( )2 ( ) 0 1 fxf x x 的关联,得出函数( )g x的单调性,进而研
17、究函数的极值,最值以及零点和恒成立问题. 三三 填空题:本题共填空题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分. 13. 圆 22 46100 xyxy的圆心到直线 10axy 的距离为2,则a_. 【答案】 3 4 ; 【解析】 【分析】 首先圆的方程写成标准方程,利用点到直线的距离公式求解. 【详解】 22 22 461002323xyxyxy, 圆心 2, 3 到直线10axy 的距离 2 23 1 2 1 a d a , 解得: 3 4 a . 故答案为: 3 4 14. 若实数 , x y满足不等式组 1 21 210 xy xy xy ,则2 3xy 的最
18、大值为_. 【答案】3 【解析】 【分析】 由题意作出可行域,转化目标函数为 2 33 z yx,数形结合即可得解. 【详解】由题意作出可行域,如图, 设23zxy,则 2 33 z yx, 上下平移直线 2 33 z yx,数形结合可得当直线 2 33 z yx过点A时,z取最大值, 由 1 210 xy xy 可得点0, 1A,所以 max 2 0313z . 故答案为:3. 15. 椭圆 22 22 1(0) xy ab ab 的左右焦点分别为 12 ,F F,椭圆上的点M满足: 12 2 3 FMF 且 12 2MF MF ,则b_. 【答案】1 【解析】 【分析】 先根据数量积运算得
19、 12 4MF MF ,再结合椭圆的定义与余弦定理即可得1b. 【详解】解:因为 12 2 3 FMF 且 12 2MF MF , 所以 12 4MF MF , 由椭圆的定义得 12 2MFMFa,故 22 2 1212 24MFMFMF MFa 所以在 12 FMF中,由余弦定理得 12 22 2 12 12 4 cos 2 MFM FM Fc M F F MF , 代入数据得 222 144848 288 acb ,解得:1b. 故答案为:1. 【点睛】关键点点睛:解题的关键在于应用定义 12 2MFMFa与余弦定理 12 22 2 12 12 4 cos 2 MFM FM Fc M F
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 河北省 保定市 高三上 学期 10 摸底 考试 数学试题 教师版 解析
链接地址:https://www.77wenku.com/p-184016.html