2021年全国高考乙卷数学(文科)试题(含答案解析)
《2021年全国高考乙卷数学(文科)试题(含答案解析)》由会员分享,可在线阅读,更多相关《2021年全国高考乙卷数学(文科)试题(含答案解析)(22页珍藏版)》请在七七文库上搜索。
1、 绝密绝密启用前启用前 河南省河南省 2021 年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试 文科数学文科数学 注意事项注意事项: 1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上答卷前,考生务必将自己的姓名、准考证号填写在答题卡上 2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改 动,用橡皮擦干净后,再选涂其他答案标号回答非选择题时,将答案写在答题卡上写在动,用橡皮擦干净后,再选涂其他答案标号回答非选择题时,将答案写在答题卡上写在 本试卷上无效本试卷上无效 3考试结
2、束后,将本试卷和答题卡一并交回考试结束后,将本试卷和答题卡一并交回 一、选择题一、选择题:本题共本题共 12小题,每小题小题,每小题 5 分,共分,共 60 分在每小题给出的四个选项中,只有一项分在每小题给出的四个选项中,只有一项 是符合题目要求的是符合题目要求的 1. 已知全集1,2,3,4,5U ,集合 1,2 ,3,4MN,则() UMN ( ) A. 5 B. 1,2 C. 3,4 D. 1,2,3,4 2. 设i4 3iz ,则z ( ) A. 3 4i B. 3 4i C. 3 4i D. 34i 3. 已知命题: ,sin1pxx R 命题 :qx R | | e1 x ,则下列
3、命题中为真命题的是( ) A. pq B. pq C. pq D. pq 4. 函数( )sincos 33 xx f x 的最小正周期和最大值分别是( ) A. 3和 2 B. 3和 2 C. 6和 2 D. 6和 2 5. 若 , x y满足约束条件 4, 2, 3, xy xy y 则3zxy的最小值为( ) A. 18 B. 10 C. 6 D. 4 6. 22 5 coscos 1212 ( ) A 1 2 B. 3 3 C. 2 2 D. 3 2 7. 在区间 1 0, 2 随机取 1 个数,则取到的数小于 1 3 的概率为( ) A. 3 4 B. 2 3 C. 1 3 D. 1
4、 6 8. 下列函数中最小值为 4是( ) A. 2 24yxx B. 4 sin sin yx x C. 2 22 xx y D. 4 ln ln yx x 9. 设函数 1 ( ) 1 x f x x ,则下列函数中为奇函数的是( ) A. 11f x B. 11f x C. 11f x D. 11f x 10. 在正方体 1111 ABCDABC D中,P为 11 B D的中点,则直线PB与 1 AD所成的角为( ) A. 2 B. 3 C. 4 D. 6 11. 设 B是椭圆 2 2 :1 5 x Cy的上顶点,点 P在 C 上,则PB的最大值为( ) A. 5 2 B. 6 C. 5
5、 D. 2 12. 设0a,若x a 为函数 2 fxa xaxb的极大值点,则( ) A. ab B. ab C. 2 aba D. 2 aba 二、填空题:本题共二、填空题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分 13. 已知向量2,5 ,4ab,若 /a b rr ,则_ 14. 双曲线 22 1 45 xy 的右焦点到直线 280 xy 的距离为_ 15. 记ABC的内角 A, B, C 的对边分别为 a, b, c, 面积为3, 60B , 22 3acac, 则b_ 16. 以图为正视图,在图中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧
6、 视图和俯视图的编号依次为_(写出符合要求的一组答案即可) 三、解答题共三、解答题共 70 分解答应写出文字说明,证明过程或演算步骤,第分解答应写出文字说明,证明过程或演算步骤,第 1721 题为必考题,题为必考题, 每个试题考生都必须作答第每个试题考生都必须作答第 22、23题为选考题,考生根据要求作答题为选考题,考生根据要求作答 (一)必考题:共(一)必考题:共 60 分分 17. 某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一 台新设备各生产了 10件产品,得到各件产品该项指标数据如下: 旧设备 9.8 10 3 10.0 10.2 9.9 9
7、.8 10.0 10.1 10.2 9.7 新设备 10.1 10.4 10.1 10.0 10.1 10.3 10 6 10.5 10.4 10.5 旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为 2 1 S和 2 2 S (1)求x,y, 2 1 S, 2 2 S; (2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果 22 12 2 10 SS yx ,则认为 新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高) 18. 如图,四棱锥PABCD的底面是矩形,PD 底面ABCD,M 为BC的中点,且PBAM (1)证明:平面
8、PAM 平面PBD; (2)若1PDDC,求四棱锥PABCD的体积 19. 设 n a是首项为 1 的等比数列,数列 n b满足 3 n n na b 已知 1 a, 2 3a, 3 9a成等差数列 (1)求 n a和 n b的通项公式; (2)记 n S和 n T分别为 n a和 n b的前 n项和证明: 2 n n S T 20. 已知抛物线 2 :2(0)C ypx p的焦点 F到准线的距离为 2 (1)求 C 的方程; (2)已知 O为坐标原点,点 P 在 C上,点 Q满足9PQQF,求直线OQ斜率的最大值. 21. 已知函数 32 ( )1f xxxax (1)讨论 f x的单调性;
9、 (2)求曲线 yf x过坐标原点的切线与曲线 yf x的公共点的坐标 (二)选考题(二)选考题:共共 10 分请考生在第分请考生在第 22、23 题中任选一题作答如果多做则按所做的第一题中任选一题作答如果多做则按所做的第一 题计分题计分 选修选修 4-4:坐标系与参数方程坐标系与参数方程 22. 在直角坐标系xOy中,C的圆心为2,1C,半径为 1 (1)写出C的一个参数方程; (2)过点4,1F作C的两条切线以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线 的极坐标方程 选修选修 45:不等式选讲不等式选讲 23. 已知函数 3f xxax (1)当1a 时,求不等式 6f x
10、 的解集; (2)若 f xa,求 a取值范围 绝密绝密启用前启用前 河南省河南省 2021 年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试 文科数学文科数学 注意事项注意事项: 1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上答卷前,考生务必将自己的姓名、准考证号填写在答题卡上 2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改 动,用橡皮擦干净后,再选涂其他答案标号回答非选择题时,将答案写在答题卡上写在动,用橡皮擦干净后,再选涂其他答案标号回答非选择题时,将答案写在答
11、题卡上写在 本试卷上无效本试卷上无效 3考试结束后,将本试卷和答题卡一并交回考试结束后,将本试卷和答题卡一并交回 一、选择题一、选择题:本题共本题共 12小题,每小题小题,每小题 5 分,共分,共 60 分在每小题给出的四个选项中,只有一项分在每小题给出的四个选项中,只有一项 是符合题目要求的是符合题目要求的 1. 已知全集1,2,3,4,5U ,集合 1,2 ,3,4MN,则() UMN ( ) A. 5 B. 1,2 C. 3,4 D. 1,2,3,4 【答案】A 【解析】 【分析】首先进行并集运算,然后进行补集运算即可. 【详解】由题意可得:1,2,3,4MN U,则 5 U MN .
12、故选:A. 2. 设i4 3iz ,则z ( ) A. 3 4i B. 3 4i C. 3 4i D. 34i 【答案】C 【解析】 【分析】由题意结合复数的运算法则即可求得 z的值. 【详解】由题意可得: 2 434343 34 1 i iii zi ii . 故选:C. 3. 已知命题: ,sin1pxx R 命题 :qx R | | e1 x ,则下列命题中为真命题的是( ) A. pq B. pq C. p q D. pq 【答案】A 【解析】 【分析】由正弦函数的有界性确定命题 p的真假性,由指数函数的知识确定命题q的真假性,由此确定正 确选项. 【详解】由于sin0=0,所以命题p
13、为真命题; 由于 x ye在R上为增函数,0 x ,所以 | |0 1 x ee,所以命题q为真命题; 所以p q 为真命题, pq 、p q 、pq为假命题. 故选:A 4. 函数( )sincos 33 xx f x 的最小正周期和最大值分别是( ) A. 3和 2 B. 3和 2 C. 6和 2 D. 6和 2 【答案】C 【解析】 【分析】利用辅助角公式化简 f x,结合三角函数周期性和值域求得函数的最小正周期和最大值. 【详解】由题, 22 ( )sincos2sinco2sin 3 s 3323234 xxxx f x x ,所以 f x的最小正 周期为 2 6 1 3 T p p
14、= ,最大值为 2. 故选:C 5. 若 , x y满足约束条件 4, 2, 3, xy xy y 则3zxy的最小值为( ) A. 18 B. 10 C. 6 D. 4 【答案】C 【解析】 【分析】由题意作出可行域,变换目标函数为3yxz ,数形结合即可得解. 【详解】由题意,作出可行域,如图阴影部分所示, 由 4 3 xy y 可得点1,3A, 转换目标函数3zxy为3yxz , 上下平移直线3yxz ,数形结合可得当直线过点A时,z取最小值, 此时 min 3 1 36z . 故选:C. 6. 22 5 coscos 1212 ( ) A. 1 2 B. 3 3 C. 2 2 D. 3
15、 2 【答案】D 【解析】 【分析】由题意结合诱导公式可得 2222 5 coscoscossin 12121212 ,再由二倍角公式即可得解. 【详解】由题意, 222222 5 coscoscoscoscossin 1212122121212 3 cos 26 . 故选:D. 7. 在区间 1 0, 2 随机取 1 个数,则取到的数小于 1 3 的概率为( ) A. 3 4 B. 2 3 C. 1 3 D. 1 6 【答案】B 【解析】 【分析】根据几何概型的概率公式即可求出. 【详解】设 “区间 1 0, 2 随机取 1 个数”,对应集合为: 1 0 2 xx ,区间长度为 1 2 ,
16、A “取到的数小于 1 3 ”, 对应集合为: 1 0 3 xx ,区间长度为 1 3 , 所以 1 0 2 3 1 3 0 2 l A P A l 故选:B 【点睛】本题解题关键是明确事件“取到的数小于 1 3 ”对应的范围,再根据几何概型的概率公式即可准确 求出 8. 下列函数中最小值为 4的是( ) A. 2 24yxx B. 4 sin sin yx x C. 2 22 xx y D. 4 ln ln yx x 【答案】C 【解析】 【分析】根据二次函数的性质可判断A选项不符合题意,再根据基本不等式“一正二定三相等”,即可得 出,B D不符合题意,C符合题意 【详解】对于 A, 2 2
17、 24133yxxx,当且仅当1x时取等号,所以其最小值为3,A不 符合题意; 对于 B,因为0sin1x, 4 sin2 44 sin yx x ,当且仅当sin2x 时取等号,等号取不到, 所以其最小值不为4,B 不符合题意; 对于 C, 因函数定义域为R, 而20 x , 2 4 2222 44 2 xxx x y , 当且仅当2 2 x , 即1x 时取等号,所以其最小值为4,C符合题意; 对于 D, 4 ln ln yx x , 函数定义域 0,11,, 而lnxR且ln0 x , 如当ln1x, 5y , D 不符合题意 故选:C 【点睛】本题解题关键是理解基本不等式的使用条件,明
18、确“一正二定三相等”的意义,再结合有关函数 的性质即可解出 9. 设函数 1 ( ) 1 x f x x ,则下列函数中为奇函数的是( ) A. 11f x B. 11f x C. 11f x D. 11f x 【答案】B 【解析】 【分析】分别求出选项的函数解析式,再利用奇函数的定义即可. 【详解】由题意可得 12 ( )1 11 x f x xx , 对于 A, 2 112f x x 不是奇函数; 对于 B, 2 11f x x 是奇函数; 对于 C, 2 112 2 f x x ,定义域不关于原点对称,不是奇函数; 对于 D, 2 11 2 f x x ,定义域不关于原点对称,不是奇函数
19、. 故选:B 【点睛】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题. 10. 在正方体 1111 ABCDABC D中,P为 11 B D 中点,则直线PB与 1 AD所成的角为( ) A. 2 B. 3 C. 4 D. 6 【答案】D 【解析】 【分析】平移直线 1 AD至 1 BC,将直线PB与 1 AD所成的角转化为PB与 1 BC所成的角,解三角形即可. 【详解】 如图,连接 11 ,BC PC PB,因为 1 AD 1 BC, 所以 1 PBC或其补角为直线PB与 1 AD所成的角, 因为 1 BB 平面 1111 DCBA,所以 11 BBPC,又 111 PCB D
20、, 1111 BBB DB, 所以 1 PC 平面 1 PBB,所以 1 PCPB, 设正方体棱长为 2,则 1111 1 2 2,2 2 BCPCD B, 1 1 1 1 sin 2 PC PBC BC ,所以 1 6 PBC . 故选:D 11. 设 B是椭圆 2 2 :1 5 x Cy的上顶点,点 P在 C 上,则PB的最大值为( ) A. 5 2 B. 6 C. 5 D. 2 【答案】A 【解析】 【分析】设点 00 ,P x y,由依题意可知,0,1B, 2 2 0 0 1 5 x y,再根据两点间的距离公式得到 2 PB,然 后消元,即可利用二次函数的性质求出最大值 【详解】设点
21、00 ,P x y,因为0,1B, 2 2 0 0 1 5 x y,所以 2 222 222 0000000 125 15 114264 24 PBxyyyyyy , 而 0 11y ,所以当 0 1 2 y 时,PB的最大值为 5 2 故选:A 【点睛】本题解题关键是熟悉椭圆的简单几何性质,由两点间的距离公式,并利用消元思想以及二次函数 的性质即可解出易错点是容易误认为短轴的相对端点是椭圆上到上定点 B 最远的点,或者认为是椭圆的 长轴的端点到短轴的端点距离最大,这些认识是错误的,要注意将距离的平方表示为二次函数后,自变量 的取值范围是一个闭区间,而不是全体实数上求最值. 12. 设0a,若
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 全国 高考 数学 文科 试题 答案 解析
文档标签
- 2021届全国高考语文
- 2021年全国高考乙卷语文试题解析版
- 2021年全国高考乙卷政治试题含答案解析
- 2021年全国高考乙卷地理试卷含答案
- 2021年全国I卷高考数学真题含答案
- 2021年全国高考甲卷数学理科试题含答案解析
- 2021年全国高考甲卷语文试题含答案
- 2021年全国高考乙卷语文试题含答案解析
- 2021年全国高考乙卷数学文科试题含答案解析
- 2021年全国高考乙卷英语试题含答案解析
- 2021年全国卷新高考数学试题含答案解析
- 2021年全国高考乙卷数学理科试题含答案解析
- 2021年高考全国乙卷化学试题含答案解析
- 2021年全国高考甲卷数学文科试题含答案解析
- 2021年高考全国乙卷物理试题含答案解析
- 2021年全国新高考乙卷政治试题含答案解析
- 2021年高考地理全国乙卷
- 2022高考数学全国乙卷
- 2022届全国乙卷高考数学
- 2022届全国乙卷高考数学文含答案解析
链接地址:https://www.77wenku.com/p-185450.html