2018-2019学年浙教版九年级上数学1.4二次函数的应用(1)同步导学练(含答案)
《2018-2019学年浙教版九年级上数学1.4二次函数的应用(1)同步导学练(含答案)》由会员分享,可在线阅读,更多相关《2018-2019学年浙教版九年级上数学1.4二次函数的应用(1)同步导学练(含答案)(7页珍藏版)》请在七七文库上搜索。
1、1.4 二次函数的应用(1)运用二次函数求实际问题中的最值,首先应确定函数表达式及自变量的取值范围,然后利用配方法或公式法求出最值,特别要注意的是,最值所对应的自变量的值必须在自变量的取值范围内.1.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是 x,降价后的价格为 y 元,原价为 a 元,则 y 关于 x 的二次函数表达式为(D).A.y=2a(x-1) B.y=2a(1-x) C.y=a(1-x2) D.y=a(1-x)22.小明参加学校运动会的跳高比赛,二次函数 h=3.15t4.5t 2(t 的单位:s;h 的单位:m)可以描述他跳跃时重心高
2、度的变化,则他起跳后到重心最高时所用的时间是(C).A.0.25s B.0.3s C.0.35s D.0.7s3.如图所示为一个长 8m、宽 6m 的矩形小花园,根据需要将它的长缩短 x(m),宽增加 x(m),要使修改后的小花园面积达到最大,则 x 应为(A). A.1m B.1.5m C.2m D.2.5m(第 3 题) (第 6 题)4.某产品的进货价格为 90 元,按 100 元一个售出时,能售 500 个;如果这种商品每涨价 1元,其销售量就减少 10 个.为了获得最大利润,其定价应为(B).A.130 元 B.120 元 C.110 元 D.100 元5.某种商品每件进价为 20
3、元,调查表明:在某段时间内若以每件 x 元(20x30,且 x 为整数)出售,可卖出(30-x)件.若要使利润最大,则每件的售价应为 25 元6.如图所示,济南某大桥有一段呈抛物线的拱梁,抛物线的表达式为 y=ax2+bx.小强骑自行车从拱梁一端 O 沿直线匀速穿过拱梁部分的桥面 OC,小强骑自行车行驶 10s 和 26s 拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面 OC 共需 36 s7.甲、乙两人分别站在相距 6m 的 A,B 两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面 1m 的 C 处发出一球,乙在离地面 1.5m 的 D 处成功击球,球飞行过程中的最高点
4、H 与甲的水平距离 AE 为 4m.现以点 A 为原点,直线 AB 为 x 轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的函数表达式及飞行的最大高度.(第 7 题)【答案】由题意得 C(0,1),D(6,1.5),抛物线的对称轴为直线 x=4.设抛物线的函数表达式为 y=ax2+bx+1(a0),根据题意得 ,解得 .1635.142ba3241a羽毛球飞行的路线所在的抛物线的函数表达式为 y=- x2+ x+1.y=- x2+ x+1=-441(x-4)2+ ,飞行的最大高度为 m.413538.某商品的进价为每件 50 元,售价为每件 60 元,每个月可卖出 200
5、件.如果每件商品的售价上涨 1 元,那么每个月少卖 10 件(每件售价不能高于 72 元),设每件商品的售价上涨 x元(x 为正整数),每个月的销售利润为 y 元(1)求 y 关于 x 的二次函数表达式,并直接写出自变量 x 的取值范围(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?【答案】(1)y=(60-50+x) (200-10x)=(10+x) (200-10x)=-10x 2+100x+2000(0x12且 x 为正整数).(2)y=-10x2+100x+2000=-10(x 2-10x)+2000=-10(x-5) 2+2250.当 x=5 时,最大月利
6、润 y=2250 元,这时售价为 60+5=65(元).9.某种正方形合金板材的成本 y(元)与它的面积成正比,设边长为 x(cm).当 x=3 时,y=18,那么当成本为 72 元时,边长为(A).A.6cm B.12cm C.24cm D.36cm10.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润 y(万元)与销售量 x(辆)之间分别满足:y1=-x 2+10x,y 2=2x,若该公司在甲、乙两地共销售 15 辆该品牌的汽车,则能获得的最大利润为(D).A.30 万元 B.40 万元 C.45 万元 D.46 万元11.如图所示,一副眼镜镜片下半部分轮廓对应的两条抛
7、物线关于 y 轴对称,ABx 轴,AB=4cm,最低点 C 在 x 轴上,高 CH=1cm,BD=2cm.右轮廓线 DFE 所在抛物线的二次函数的表达式为 y= (x-3) 2 41(第 11 题) (第 12题)12.某水产养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价 y1(元)与销售月份 x(月)满足关系式y=- x+36,而其每千克成本 y2(元)与销售月份 x(月)满足的函数关系如图所示.“五一”83之前, 4 月份出售这种水产品每千克的利润最大.13.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如
8、图所示,甲在 O点正上方 1m 的 P 处发出一球,羽毛球飞行的高度 y(m)与水平距离 x(m)之间满足函数表达式 y=a(x-4)2+h,已知点 O 与球网的水平距离为 5m,球网的高度为 1.55m.(1)当 a=- 时,求 h 的值.通过计算判断此球能否过网.41(2)若甲发球过网后,羽毛球飞行到与点 O 的水平距离为 7m,离地面的高度为 m 的 Q 处512时,乙扣球成功,求 a 的值.(第 13 题)【答案】(1)当 a=- 时,y=- (x-4)2+h,将点 P(0,1)代入,得- 16+h=1,解得241 241h= .把 x=5 代入 y=- (x-4)2+ ,得 y=-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 2019 学年 浙教版 九年级 数学 1.4 二次 函数 应用 同步 导学练含 答案
链接地址:https://www.77wenku.com/p-18628.html